SPECIFICATIONS October 26, 2011 **Autopsy Table Installations** Louis A Johnson VAMC Clarksburg, WV VA Project Number 540-09-102 VA Contract Number 540-C-05003 Volume 1 of 1 Louis A Johnson VAMC, Clarksburg WVA VA Project Number 540-09-102 VA Contract Number 540-C-05003 # DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS # TABLE OF CONTENTS Section 00 01 10 | | DIVISION 00 SPECIAL SECTIONS | DATE | PAGES | |-------------|--|-------|-------| | 00 01 10 | Table of Contents | 12-09 | 4 | | 00 01 15 | List of Drawing Sheets | 10-07 | 3 | | | DIVISION 01 GENERAL REQUIREMENTS | | | | 01 00 00 | General Requirements - Table of Contents | 10-09 | 3 | | 01 00 00 | General Requirements | 10-09 | 27 | | 01 32 16 15 | Project Schedules (Small Projects - Design/Bid/
Build | 05-09 | 11 | | 01 33 23 | Shop Drawings, Product Data, and Samples | 11-08 | 5 | | 01 42 19 | Reference Standards | 11-08 | 7 | | 01 57 19 | Temporary Environmental Controls | 10-07 | 5 | | 01 58 16 | Temporary Interior Signage | 10-07 | 1 | | 01 74 19 | Construction Waste Management | 07-08 | 7 | | | DIVISION 02 - EXISTING CONDITIONS | | | | 02 41 19 | Selective Demolition | _ | 3 | | 02 82 11 | Traditional Asbestos Abatement | 09-05 | 62 | | | DIVISION 03 - CONCRETE | | | | 03 30 53 | Cast in Place Concrete | | 10 | | 03 35 03 | Hydraulic Cement Based Underlayment | - | 3 | | | DIVISION 04 - MASONRY | | | | 04 05 13 | Masonry Mortaring | 8-08 | 3 | | 04 05 31 | Masonry Tuck Pointing | 10-08 | 3 | | 04 20 00 | Unit Masonry | | 31 | | | | | | Louis A Johnson VAMC, Clarksburg WVA VA Project Number 540-09-102 VA Contract Number 540-C-05003 | | DIVISION 05 - METALS | | | |----------|---|-------|----| | 05 50 00 | Metal Fabrications | 10-07 | 12 | | | | | | | | DIVISION 06 - WOOD, PLASTICS AND COMPOSITES | | | | 06 10 00 | Rough Carpentry | 10-07 | 5 | | 06 20 00 | Finish Carpentry and Custom Casework | 10-07 | 13 | | | DIVISION 07 THERMAL AND MOISTURE PROTECTION | | | | 07 60 00 | Flashing and Sheet Metal | 04-08 | 9 | | 07 84 00 | Firestopping | 08-08 | 5 | | 07 92 00 | Joint Sealants | 08-08 | 12 | | | DIVISION 08 OPENINGS | | | | 08 11 13 | Hollow Metal Doors and Frames | 02-09 | 7 | | 08 14 00 | Interior Wood Doors | 02-09 | 6 | | 08 31 13 | Access Doors and Frames | 10-07 | 4 | | 08 71 00 | Door Hardware | 12-09 | 24 | | | DIVISION 09 - FINISHES | | | | 09 22 16 | Non-Structural Metal Framing | 07-09 | 8 | | 09 29 00 | Gypsum Board | 11-08 | 8 | | 09 30 13 | Ceramic/Porcelain Tiling | 03-09 | 19 | | 09 51 00 | Acoustical Ceilings | 11-07 | 10 | | 09 65 16 | Resilient Sheet Flooring | 08-08 | 8 | | 09 91 00 | Painting | 04-09 | 19 | | 96 59 | High Build Glazed Coating | 07-06 | 3 | | | DIVISION 10 - SPECIALTIES | | | | 10 14 00 | Signage | | 12 | | 10 28 00 | Toilet, Bath, and Laundry Accessories | 02-08 | 11 | | 10 44 13 | Fire Extinguisher Cabinets | 10-07 | 2 | Louis A Johnson VAMC, Clarksburg WVA VA Project Number 540-09-102 VA Contract Number 540-C-05003 | | | DIVISION 11 - EQUIPMENT | | | |----|-------|---|--------|----| | | | | | | | 11 | 78 00 | Mortuary Equipment | 11-07 | 12 | | 11 | 78 13 | Mortuary Refrigerator | 11-07 | 3 | | | | DIVISION 12 - FURNISHINGS | | | | 12 | 36 01 | Stainless Steel Countertops | 11-07 | 3 | | | | DIVISION 21- FIRE SUPPRESSION | | | | 21 | 05 11 | Common Work Results for Fire Suppression | 11-09 | | | 21 | 08 00 | Commissioning of Fire Suppression System | 07-10 | 7 | | 21 | 13 13 | Wet-Pipe Sprinkler Systems | 05-08 | | | | | DIVISION 22 - PLUMBING | | | | 22 | 05 11 | Common Work Results for Plumbing | 12-09 | | | 22 | 05 23 | General-Duty Valves for Plumbing Piping | 12-09 | 21 | | 22 | 07 11 | Plumbing Insulation | 12-06 | | | 22 | 08 00 | Commissioning of Plumbing Systems | 07-10 | | | 22 | 11 00 | Facility Water Distribution | 10-06 | | | 22 | 40 00 | Plumbing Fixtures | 05-08M | | | | | | | 11 | | | | DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC) | | | | 23 | 05 11 | Common Work Results for HVAC and Steam Generation | 11-09 | | | 23 | 05 41 | Noise and Vibration Control for HVAC Piping and Equipment | 12-06 | 24 | | 23 | 05 93 | Testing, Adjusting, and Balancing for HVAC | 12-06 | 9 | | 23 | 07 11 | HVAC Insulation | 12-06 | 10 | | | 08 00 | Commissioning of HVAC | 07-10 | 20 | | | 08 11 | Demonstrations and Tests for Boiler Plant | 11-10 | | | | 21 13 | Hydronic Piping | 12-06M | | | | 23 00 | Refrigerant Piping | 02-10 | 20 | | | 25 00 | HVAC Water Treatment | 02-10 | | | 23 | 31 00 | HVAC Ducts and Casings | 10-04M | | Louis A Johnson VAMC, Clarksburg WVA VA Project Number 540-09-102 VA Contract Number 540-C-05003 | 23 34 | | HVAC Fans | 11-09 | 15 | |-------|----|--|--------|----| | 23 37 | 00 | Air Outlets and Inlets | 11-09 | 6 | | 23 40 | 00 | HVAC Air Cleaning Devices | 11-09 | 4 | | 23 73 | 00 | Indoor Central-Station Air-Handling Units | 04-03M | | | 23 82 | 16 | Air Coils | 12-04 | 17 | | | | | | 3 | | | | DIVISION 26 - ELECTRICAL | | | | | | | | | | 26 05 | 11 | Requirements for Electrical Installations | 11-09 | | | 26 05 | | Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below) | 12-05 | 8 | | 26 05 | | Grounding and Bonding for Electrical Systems | 10-06 | 6 | | 26 05 | | Raceway and Boxes for Electrical Systems | 12-05 | 6 | | 26 08 | 00 | Commissioning of Electrical Systems | 07-10 | 10 | | 26 09 | 23 | Lighting Controls | 09-10 | | | 26 24 | 16 | Panelboards | 10-06 | | | 26 27 | 26 | Wiring Devices | 04-09 | 6 | | 26 51 | 00 | Interior Lighting | 04-09 | 6 | | | | | | 11 | | | | DIVISION 27 - COMMUNICATIONS | | | | 27 05 | 11 | Requirements for Communications Installations | 11-09 | | | 27 05 | | Grounding and Bonding for Communications Systems | 10-06 | 6 | | 27 05 | | Raceways and Boxes for Communications Systems | 12-05 | 9 | | 27 15 | | Communications Horizontal Cabling | 10-06 | 9 | | 27 10 | | Structured Cabling | 12-05 | 74 | | | | - | | | | | | DIVISION 28 - ELECTRONIC SAFETY AND SECURITY | # AUTOPSY TABLE INSTALLATIONS Louis A Johnson VAMC, Clarksburg WVA VA Project Number 540-09-102 VA Contract Number 540-C-05003 - - - END - - - # AUTOPSY TABLE INSTALLATIONS Louis A Johnson VAMC, Clarksburg WVA VA Project Number 540-09-102 VA Contract Number 540-C-05003 # SECTION 01 00 00 # GENERAL REQUIREMENTS # TABLE OF CONTENTS | 1.1 GENERAL INTENTION | 1 | |--|----| | 1.2 STATEMENT OF BID ITEM(S) | 2 | | 1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR | 2 | | 1.4 construction security requirements | 2 | | 1.5 FIRE SAFETY | | | 1.6 OPERATIONS AND STORAGE AREAS | 7 | | 1.7 ALTERATIONS | 11 | | 1.8 INFECTION PREVENTION MEASURES | 12 | | 1.9 DISPOSAL AND RETENTION | 15 | | 1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, | | | UTILITIES, AND IMPROVEMENTS | 16 | | 1.12 This Section not used | 17 | | 1.13 This Section not used | 17 | | 1.14 This Section not used | | | 1.15 As-Built Drawings | 17 | | 1.16 USE OF ROADWAYS | 17 | | 1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT | 18 | | 1.19 TEMPORARY USE OF EXISTING ELEVATORS | 19 | | 1.21 TEMPORARY TOILETS | 20 | | 1.22 AVAILABILITY AND USE OF UTILITY SERVICES | 20 | | 1.23 NEW TELEPHONE EQUIPMENT | 21 | | 1.24 TESTS | 21 | | 1.25 INSTRUCTIONS | 22 | | 1.26 GOVERNMENTFURNISHED PROPERTY | 23 | | 1.27 RELOCATED EQUIPMENT/ITEMS | 24 | | 1.30 SAFETY SIGN | 25 | | 1.31 ThIS SECTION NOT USED | 25 | | 1.32 This Section not used | 25 | | 1.33 HISTORIC PRESERVATION | 25 | #### **SECTION 01 00 00** #### GENERAL REQUIREMENTS #### 1.1 GENERAL INTENTION - A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish all labor and materials and perform work for Morgue as required by drawings and specifications. - B. Visits to the site by Bidders may be made only by appointment with the Medical Center Contracting Officer. - C. Offices of LAI, as Architect/Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative. - D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the Contracting Officer's Representative (COR) in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the Contracting Officer's Representative (COR). - E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access. - F. Prior to commencing work, general contractor shall provide proof that a OSHA 30 certified "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present. ## G. Training: - All employees of general contractor or subcontractors shall have the 10-hour OSHA certified Construction Safety course and /or other relevant competency training, as determined by VA CP with input from the ICRA team. - 2. Submit training records of all such employees for approval before the start of work. #### 1.2 STATEMENT OF BID ITEM(S) - A. BASE BID, GENERAL CONSTRUCTION: Morgue: Work includes
general construction, alterations, mechanical and electrical work, laboratory equipment, utility systems, body lift, necessary removal of existing structures and certain other items as further defined by the construction documents. - B. ALTERNATE NO.1: Do not relocate the Condensing Unit for the Morque cooler. #### 1.3 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR - A. AFTER AWARD OF CONTRACT, 1 CD set of specifications and drawings and one electronic file will be furnished. Hard copy drawings and specifications will consist of those returned by prospective bidders. - B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from reproducible sepia prints furnished by Issuing Office. Such sepia prints shall be returned to the Issuing Office immediately after printing is completed. #### 1.4 CONSTRUCTION SECURITY REQUIREMENTS - A. Security Plan: - 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project. - 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations. # B. Security Procedures: - 1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site. Employees should be aware that violation of law at the VAMC are covered by Federal Law, not State Law. - 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 5 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section. - 3. No photography of VA premises is allowed without written permission of the Contracting Officer. - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer. - C. Guards: NOT USED - D. Key Control: - 1. The General Contractor shall provide duplicate keys and lock combinations to the Contracting Officer's Representative (COR) for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action. - 2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate. #### E. Document Control: - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information". - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project. - 4. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request. - 5. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer. - 6. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA. - 7. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information". - 8. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS). - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system. - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed. #### F. Motor Vehicle Restrictions - 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies. - 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only. #### 1.5 FIRE SAFETY - A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only. 51B-2003Standard for Fire Prevention During Welding, Cutting and Other Hot Work 70-2008National Electrical Code 241-2004Standard for Safeguarding Construction, Alteration, and Demolition Operations - 3. Occupational Safety and Health Administration (OSHA): 29 CFR 1926Safety and Health Regulations for Construction - B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer's Representative (COR) and Facility Safety Manager for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the general contractor's competent person per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Documentation shall be provided to the Contracting Officer's Representative (COR) that individuals have undergone contractor's safety briefing. - C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241. - D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet). - E. Temporary Construction Partitions: - 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices. Construction doors shall have combination cipher locks with key cores to match the existing medical center for personnel access. Refer to drawings for notes specific to each facility project. - 2. Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures. - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING. - F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70. - G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer's Representative (COR) and Facility Safety Manager. - H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer's Representative (COR) and Facility Safety Manager. - I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10. - J. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30. - K. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241. - L. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers. - M. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer's Representative (COR) and Facility Safety Manager. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Contracting Officer's Representative (COR). During construction, all sprinkler heads shall have extreme duty metal protective cages installed by the contractor. - N. Smoke Detectors: Prevent accidental operation. Remove temporary
covers at end of work operations each day. Coordinate with Contracting Officer's Representative (COR) and Facility Safety Manager. - O. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer's Representative (COR). Obtain permits from Contracting Officer's Representative (COR) at least 48 hours in advance. Designate the contractors' responsible project site fire prevention program manager - to permit hot work. This person shall be identified in the contractors written project safety program. - P. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer's Representative (COR) and Facility Safety Manager. - Q. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas. - R. Dispose of waste and debris in accordance with NFPA 241, shall be removed from buildings daily. - S. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926. - T. If required, submit documentation to the Contracting Officer's Representative (COR) that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features. #### 1.6 OPERATIONS AND STORAGE AREAS - A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance. - B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed. - C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads. #### (FAR 52.23610) - D. Working space and space available for storing materials shall be as determined by the Contracting Officer's Representative (COR). Space for contractor to utilize of onsite storage is at a premium. The contractor should be prepared to store materials off site. - E. Workmen are subject to rules of VA Medical Center applicable to their conduct. - F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by Contracting Officer's Representative (COR) where required by limited working space. The contractor shall be flexible on daily scheduling due to surgeries, medical center procedures or other services and may be required to stop tasks upon immediate notice to accommodate the medical center. Some tasks may be required to take place during off hours or during weekends. - 1. Do not store materials and equipment in other than assigned areas. - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation. - 3. Where access by VA Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements. - 4. The contractor shall maintain in operating condition existing fire protection and alarm equipment. The contractor shall make arrangements for pre-inspection of the site with the COR and medical center Fire Protection Specialist at least 2 weeks in advance of the proposed date of starting work in each specific phase or area. The contractor may not begin work Until the medical center Fire Protection Specialist or COR has approved the work area. - G. Phasing: Not applicable. - H. Building will be occupied during performance of work. - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period. - I. Construction Fence: Not applicable. - J. When a building is turned over to Contractor, Contractor shall accept entire responsibility therefore. - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified. - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for preinspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman. - K. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Contracting Officer's Representative (COR). - No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Contracting Officer's Representative (COR). Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical - outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements. - 2. Contractor shall submit a request to interrupt any such services to Contracting Officer's Representative (COR), in writing, 48 hours in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption. - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours. - 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Contracting Officer's Representative (COR). - 5. In case of a contract construction emergency, service will be interrupted on approval of Contracting Officer's Representative (COR). Such approval will be confirmed in writing as soon as practical. - 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor. - L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are not to be reused, shall be entirely removed. Lines that cannot be removed shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces. - M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following: - 1. Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of
construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times. - 2. Method and scheduling of required cutting, altering and removal of existing roads, walks, and entrances must be approved by the Contracting Officer's Representative (COR). - N. Coordinate the work for this contract with other construction operations as directed by Contracting Officer's Representative (COR). This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS. #### 1.7 ALTERATIONS - A. Survey: Before any work is started, the Contractor shall make a thorough survey with the Contracting Officer's Representative (COR) and a representative of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces: - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building. - Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both. - 3. Shall note any discrepancies between drawings and existing conditions at site. - 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and Contracting Officer's Representative (COR). - B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of Contracting Officer's Representative (COR), to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified - accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.2362) and "CHANGES" (FAR 52.2434 and VAAR 852.23688). - C. ReSurvey: Thirty days before expected partial or final inspection date, the Contractor and Contracting Officer's Representative (COR) together shall make a thorough resurvey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report: - 1. Resurvey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract. - D. Protection: Provide the following protective measures: - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery. - 2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated. - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed. ## 1.8 INFECTION PREVENTION MEASURES - A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group will monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if dust or other materials is found. At any time the contractor fails to maintain this program, the Contracting Officer may stop ALL work until the Infectious Control Staff is satisfied that all remedial actions taken by the contractor conform to VAMC policies. - B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group, as specified here and indicated on the drawings. Prior to start of work, prepare a plan detailing project- specific dust protection measures, including periodic status reports, and submit to Contracting Officer's Representative (COR) and Facility ICRA team for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. - 1. All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center. <u>All personnel working on the</u> <u>project are required to watch the video, "Infection Control During</u> Construction". - C. Medical center Infection Control personnel shall monitor for airborne disease (e.g. aspergillosis) as appropriate during construction. A baseline of conditions may be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality. In addition: - 1. The RE and VAMC Infection Control personnel shall review pressure differential monitoring documentation to verify that pressure differentials in the construction zone and in the adjacent rooms are appropriate for their settings. Upon notification, the contractor shall implement corrective measures to restore proper pressure differentials as needed. - 2. In case of any problem, the medical center, along with assistance from the contractor, shall conduct an environmental assessment to find and eliminate the source. - D. The following preventive measures shall be adopted during construction to keep down dust and prevent mold. - Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by Contracting Officer's Representative (COR). Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction. - 2. The contractor shall not perform dust producing tasks within occupied areas without the approval of the Contracting Officer's Representative (COR). For construction in any areas that will remain jointly occupied by the medical Center and Contractor's workers, the Contractor shall: - a. Provide dust proof one-hour fire-rated temporary drywall construction barriers to completely separate construction from the operational areas of the hospital in order to contain dirt - debris and dust. Barriers shall be sealed and made presentable on hospital occupied side. Install a self-closing rated door in a metal frame, commensurate with the partition, to allow worker access. Maintain negative air at all times. A fire retardant polystyrene, 6-mil thick or greater plastic barrier meeting local fire codes may be used where dust control is the only hazard, and an agreement is reached with the Contracting Officer's Representative (COR) and VA Medical Center. - b. HEPA filtration is required where the exhaust dust may reenter the breathing zone. Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. Install HEPA (High Efficiency Particulate Accumulator) filter vacuum system rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. Insure continuous negative air pressures occurring within the work area. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Exhaust hoses shall be heavy duty, flexible steel reinforced and exhausted so that dust is not reintroduced to the medical center. - c. Adhesive Walk-off/Carpet Walk-off Mats, minimum 600mm \times 900mm (24" \times 36"), shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times. - d. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as they are created. Transport these outside the construction area in containers with tightly fitting lids. - e. The contractor shall not haul debris through patient-care areas without prior approval of the Contracting Officer's Representative (COR) and the VA Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied - areas shall be made free from dust and moisture by vacuuming and wipe down. - f. Using a HEPA vacuum, clean inside the barrier and vacuum ceiling tile prior to replacement. Any ceiling access panels opened for investigation beyond sealed areas shall be sealed immediately when unattended. - g. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 4 hours. Remove and dispose of porous materials that remain damp for more than 24 hours. - h. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after
the removal. ## E. Final Cleanup: - 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction. - 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc. - 3. All new air ducts shall be cleaned prior to final inspection. #### 1.9 DISPOSAL AND RETENTION - A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows: - 1. Reserved items which are to remain property of the Government are identified by attached tags or noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to reinstallation and reuse. Store such items where directed by Contracting Officer's Representative (COR). - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center. - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation. # 1.10 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS - A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a treepruning compound as directed by the Contracting Officer. - B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor. #### (FAR 52.2369) # 1.11 RESTORATION - A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the Contracting Officer's Representative (COR). Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Contracting Officer's Representative (COR) before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified. - B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and - electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work. - C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment. - D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.2434 and VAAR 852.23688) and "DIFFERING SITE CONDITIONS" (FAR 52.2362). - 1.12 THIS SECTION NOT USED - 1.13 THIS SECTION NOT USED - 1.14 THIS SECTION NOT USED #### 1.15 AS-BUILT DRAWINGS - A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications. - B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Contracting Officer's Technical Representative's (COR's) review, as often as requested. - C. Contractor shall deliver two approved completed sets of as-built drawings to the Contracting Officer's Representative (COR) within 15 calendar days after each completed phase and after the acceptance of the project by the Contracting Officer's Representative (COR). Final payment will not be made until delivery and acceptance of as-built drawings by Government. - D. Paragraphs A, B, & C shall also apply to all shop drawings. #### 1.16 USE OF ROADWAYS A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the Contracting Officer's Representative (COR), such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed by the Contractor at Contractor's expense. When necessary to cross - curbing, sidewalks, or similar construction, they must be protected by well constructed bridges. - B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations. - C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof. #### 1.17 This Section not used #### 1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT - A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions: - 1. Permission to use each unit or system must be given by Contracting Officer's Representative (COR). If the equipment is not installed and maintained in accordance with the following provisions, the Contracting Officer's Representative (COR) will withdraw permission for use of the equipment. - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces. - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated. - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freezeup damage. - 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system. - 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government. Boilers, pumps, feedwater heaters and auxiliary equipment must be operated as a complete system and be fully maintained by operating personnel. Boiler water must be given complete and continuous chemical treatment. - B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government as determined by COR. - C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections. #### 1.19 TEMPORARY USE OF EXISTING ELEVATORS - A. Use of existing elevator(s) for handling building materials and Contractor's personnel will be permitted subject to following provisions: - 1. Contractor makes all arrangements with the Contracting Officer's Representative (COR) for use of elevators. The Contracting Officer's Representative (COR) will ascertain that elevators are in proper condition. Contractor may use elevators as needed for construction operations only with the approval of the Contracting
Officer's Representative (COR). - 2. Contractor covers and provides maximum protection of following elevator components: - a. Entrance jambs, heads soffits and threshold plates. - b. Entrance columns, canopy, return panels and inside surfaces of car enclosure walls. ### c. Finish flooring. - 3. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes. - 4. If brake lining of elevators are excessively worn or damaged during temporary use, they shall be removed and replaced by new brake lining. - 5. All parts of main controller, starter, relay panel, selector, etc., worn or damaged during temporary use shall be removed and replaced with new parts, if recommended by elevator inspector after elevator is released by Contractor. - 6. Place elevator in condition equal, less normal wear, to that existing at time it was placed in service of Contractor as approved by Contracting Officer. - 7. The contractor will be responsible for damages that are not documented by the contractor with the COR prior to commencing work. Contractor is responsible to bring all paint, flooring, handrails, ceiling, lenses, displays, doors and other items not in good condition to good operating and presentable order upon completion of the project. Good condition includes fully functional with no scratches, dents or dings. #### 1.21 TEMPORARY TOILETS A. Contractor and employees may use existing facilities. # 1.22 AVAILABILITY AND USE OF UTILITY SERVICES - A. Not applicable. - B. The Contractor, at Contractor's expense and in a workmanlike manner satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, and associated paraphernalia. - C. Not used. - D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials: - 1. Obtain heat by connecting to Medical Center heating distribution system. - a. Steam is available at no cost to Contractor. - Any device that uses a flame will not be permitted. - E. Electricity (for Construction and Testing): Furnish all temporary electric services. - 1. Obtain electricity by connecting to the Medical Center electrical distribution system. Electricity for all other uses is available at no cost to the Contractor. - F. Water (for Construction and Testing): Furnish temporary water service. - 1. Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor. - 2. Maintain connections, pipe, fittings and fixtures and conserve water use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at Contracting Officer's Representative (COR's) discretion of use of water from Medical Center's system. - G. Steam: Furnish steam system for testing required in various sections of specifications. - Obtain steam for testing by connecting to the Medical Center steam distribution system. Steam is available at no cost to the Contractor. - 2. Maintain connections, pipe, fittings and fixtures and conserve steam use so none is wasted. Failure to stop leakage or other waste will be cause for revocation (at Contracting Officer's Representative (COR)'s discretion), of use of steam from the Medical Center's system. - H. Fuel: Not used. #### 1.23 NEW TELEPHONE EQUIPMENT The contractors are to install new voice and data lines. #### 1.24 TESTS - A. Pretest mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pretested. - B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests. - C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components. - D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant. - E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system. #### 1.25 INSTRUCTIONS - A. Contractor shall furnish Maintenance and Operating manuals and verbal instructions when required by the various sections of the specifications and as hereinafter specified. - B. Manuals: Maintenance and operating manuals (two copies each and a CD disk of PDFs) for each separate piece of equipment shall be delivered to the Contracting Officer's Representative (COR) at the completion date of the project. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and subassembly components. Manuals shall include an index covering all component parts clearly crossreferenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted. The VA will withhold 10% of the final contract price until all manuals are submitted. C. Instructions: Contractor shall provide qualified, factory trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of interrelated systems. All instruction periods shall be at such times as scheduled by the Contracting Officer's Representative (COR) and shall be considered concluded only when the Contracting Officer's Representative (COR) is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Contracting Officer's Representative (COR), does not demonstrate sufficient qualifications in accordance with requirements for instructors above. ## 1.26 GOVERNMENTFURNISHED PROPERTY - A. The Government shall deliver to the Contractor, the Government furnished property shown on the drawings. - B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Medical Center . - C. Storage space for equipment will be provided by the Government and the Contractor shall be prepared to unload and store such equipment therein upon its receipt at the Medical Center. - D. Notify Contracting Officer in writing, 15 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment. - 1. Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages. - 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government. - E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings,
fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stubup shall be furnished and installed by the contractor at no additional cost to the Government. - F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings. - G. Not used. ## 1.27 RELOCATED EQUIPMENT/ITEMS - A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated or otherwise shown to be relocated by the Contractor. - B. Perform relocation of such equipment or items at such times and in such a manner as directed by the Contracting Officer's Representative (COR). - C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines". - D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition. - E. Contractor shall employ services of an installation engineer, who is an authorized representative of the manufacturer of this equipment to supervise assembly and installation of existing equipment, required to be relocated. - F. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation. ## 1.28 This Section not used # 1.29 This Section not used #### 1.30 SAFETY SIGN - A. Provide a Safety Sign where directed by Contracting Officer's Representative (COR). Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide two 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground. - B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of white gloss paint. Letters and design shall be painted with gloss paint of colors noted. - C. Maintain sign and remove it when directed by Contracting Officer's Representative (COR). - D. Not used. - E. Post the number of accident free days on a daily basis. #### 1.31 THIS SECTION NOT USED #### 1.32 THIS SECTION NOT USED #### 1.33 HISTORIC PRESERVATION Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the Contracting Officer's Representative (COR) verbally, and then with a written follow up. - E N D # SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD) #### PART 1- GENERAL #### .1 SCHEDULE: - A. The contractor shall submit a draft Gantt chart schedule and schedule of values with their bid proposals. If necessary, a revision submission will be required at the notice to proceed meeting. Once approved it becomes the "Approved Schedule". - B. The contractor will not to be allowed to perform <u>any work of any kind</u> at the VAMC without an Approved Schedule. - C. The VAMC will hold the contractor to the Approved Schedule weekly. - D. The contractor shall complete the work under the contract by the end of the contract period. The project superintendent will be required to submit a 3 week look ahead schedule on a weekly basis in an excel format as provided by the COR. - E. There will be NO contract extensions unless there is an act of god or more time is needed as the result of a contract modification. ## 1.2 GHANT CHART PROGRESS SCHEDULE: - A. Within 10 calendar days after award, the contractor shall submit a Ghant chart progress schedule. Any submitted schedule that is not acceptable will be returned to the contractor until an acceptable schedule is received. Once the submitted schedule is accepted by the Contracting Officer, it becomes the "APPROVED SCHEDULE". The Ghant chart shall show the complete sequence of construction by activity (including acquisition of materials and equipment). The Ghant chart shall identify the construction start date, the completion date, and all workdays through the duration of the project. If the project requires various delivery dates, dates will be indicated for each of the required deliverable elements (i.e., housing unit or specific building). The Ghant chart shall also relate to a separate SCHEDULE OF VALUES and identify the various activities which shall be used as the basis for the Contractor's periodic request for payments. Submission and approval of as-built drawings and O&M manuals shall each be separate line items (with associated costs on the SCHEDULE OF VALUES) on the Ghant chart. - B. If a contract modification is made during the course of the contract execution, a revised Ghant Chart schedule may be submitted by the contractor to reflect the changes to the Approved Schedule by the modification. The new Approved Schedule shall clearly state that it is Approved Schedule Modification 1, 2, 3 ect. C: Monthly progress meetings shall be held on dates mutually agreed to by the Contracting Officer or Contracting Officers Representative and the Contractor. Presence of subcontractors during progress meetings is optional unless required by the COR. The contractor will provide meeting minutes in a professional format as directed by the COR and submitted within 3 days of the meeting. The contractor will provide updates of the project schedule and submittals and report of the status of the project. The COR may direct meetings more frequently as (s)he determines necessary. #### .2schedule of values: - A. The contractor shall submit a Schedule of Values with their bid proposal. Once contract is awarded and it is approved it becomes the Approved Schedule of Values. - B. The Schedule of Values shall consist of a list of all of the activities that are shown on the Approved Schedule. Each activity shall contain an explanation of the activity that contains enough detail so that the COR can use it to determine when the activity has been completed. - C. For each activity on the Schedule of Values the contractor shall provide a cost. The total of all activity costs shall not exceed the total award amount less overhead and profit, 80% of the award amount. - D. The contractor may submit a revised Schedule of Values to reflect changes that result from a contract modification. - E. Request for partial payments shall only be made for activities that have been 100% completed. The COR shall determine if an activity has been completed before partial payments are approved. E N D # SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES - 11. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.23621) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS. - 12. For the purposes of this contract, samples (including laboratory samples to be tested), test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS. - 13. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless: - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or; - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or; - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government. - 14. Forward submittals in 14 days time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract required items. Delays attributable to untimely and rejected submittals (including any laboratory samples to be tested) will not serve as a basis for extending contract time for completion. - 15. Submittals will be reviewed for compliance with contract requirements by ArchitectEngineer, and action thereon will be taken by Contracting Officer's Reprentative (COR) on behalf of the Contracting Officer (CO). - 16. Upon receipt of submittals, ArchitectEngineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals. - 7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant to request therefore by Contracting Officer, adjustment in contract price and may be made in accordance with Articles titled CHANGES (FAR 52.2434) and CHANGES SUPPLEMENT (VAAR 852.23688) of the GENERAL CONDITIONS. - 18. The Contractor shall submit coordination drawings and overlays for each discipline. Development of these drawings shall begin during demolition along with submittals. It shall be the contractor's responsibility to field trace existing and new
routes for each discipline. - 19. Submittals must be submitted by Contractor only and shipped items to be prepaid. All submittals shall be transferred electronically via FTP and email. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals. - A. Submit samples required by Section 09 06 00, SCHEDULE FOR FINISHES, one each. Submit other samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified. - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Submittal cover letter shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval. - 1. A copy of cover letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only. - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project. - Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor. - C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer. - 1. Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested. - 2. Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years. - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory. - 4. Contractor shall send a copy of transmittal letter to both Contracting Officer's Representative and to ArchitectEngineer simultaneously with submission of material to a commercial testing laboratory. - 5. Laboratory test reports shall be sent directly to Contracting Officer's Representative for appropriate action. - 6. Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report. - 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item. - D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter. - E. Approved samples will be kept on file by the Contracting Officer's Representative at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract. - F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check. - For each drawing required, submit one legible photographic paper or vellum reproducible and one PDF. Drawings may be requested in AutoCAD by the COR. - 2. Reproducible shall be full size. - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number. - 4. A space 120 mm by 125 mm (43/4 by 5 inches) shall be reserved on each drawing to accommodate approval or disapproval stamp. - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment. - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor. - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to ArchitectEngineer under one cover. - 1-10. Samples (except laboratory samples), shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to: LAI, Inc. 685 Mosser Road, Suite 10 McHenry, MD 21541 Or Route 3 Box 383e Fairmont, WV 26554 1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Contracting Officer's Representative. E N D # SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS #### EP1. DESCRIPTION - A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work. - B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which: - 1. Adversely effect human health or welfare, - 2. Unfavorably alter ecological balances of importance to human life, - 3. Effect other species of importance to humankind, or; - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes. #### C. Definitions of Pollutants: - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes. - 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work. - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water. - 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities. - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency. - 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones. - 7. Sanitary Wastes: - a. Sewage: Domestic sanitary sewage and human and animal waste. - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food. #### EP2. QUALITY CONTROL - A. Establish and maintain quality control for the environmental protection of all items set forth herein. - B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken. #### EP-3. REFERENCES - A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. - B. U.S. National Archives and Records Administration (NARA): 33 CFR 328Definitions #### EP-4. SUBMITTALS - A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following: - 1. Environmental Protection Plan: Within 3 days of the NTP, the Contractor shall meet with the Contracting Officer's Representative (COR) and Green Environmental Management Coordinator (GEMS) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 10 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer's Representative (COR) and the Contracting Officer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following: - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan. - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site. - C. Name(s) and qualifications of person(s) responsible for
training the Contractor's environmental protection personnel. - d. Description of the Contractor's environmental protection personnel training program. - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits. - f. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan. - h. Permits, licenses, and the location of the solid waste disposal area. - i. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. - B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures. ## EP5. PROTECTION OF ENVIRONMENTAL RESOURCES - A. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. - 1. Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials at all times, including weekends, holidays, and hours when work is not in progress. - 2. Odors: Control odors of construction activities and prevent obnoxious odors from occurring. - F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Contracting Officer's Technical Representative. Maintain noise-produced work at or below the decibel levels and within the time periods specified. - 1. Perform construction activities involving repetitive, high-level impact noise during times as directed by the Contracting Officer's Representative (COR). Repetitive impact noise on the property shall not exceed the following dB limitations: Time Duration of Impact Noise Sound Level in dB | More than 12 minutes in any hour | 70 | |-------------------------------------|----| | Less than 30 seconds of any hour | 85 | | Less than three minutes of any hour | 80 | | Less than 12 minutes of any hour | 75 | - 2. Provide sounddeadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following: - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA): 75 - b. Use shields or other physical barriers to restrict noise transmission. - c. Provide soundproof housings or enclosures for noiseproducing machinery. - d. Use efficient silencers on equipment air intakes. - e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified. - f. Line hoppers and storage bins with sound deadening material. - g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum. - 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the construction area limits or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the \underline{A} weighing network of a General Purpose sound level meter at slow response. Submit the recorded information to the Contracting Officer's Representativenoting any problems and the alternatives for mitigating actions. - G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner. H. Final Cleanup: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Contracting Officer's Representative(COR). Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations. E N D ## SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste. - B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused - C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following: - 1. Waste Management Plan development and implementation. - 2. Techniques to minimize waste generation. - 3. Sorting and separating of waste materials. - 4. Salvage of existing materials and items for reuse or resale. - 5. Recycling of materials that cannot be reused or sold. - D. At a minimum the following waste categories shall be diverted from landfills: - 1. Soil. - 2. Inerts (eg, concrete, masonry and asphalt). - 3. Clean dimensional wood and palette wood. - 4. Green waste (biodegradable landscaping materials). - 5. Engineered wood products (plywood, particle board and I-joists, etc). - 6. Metal products (eg, steel, wire, beverage containers, etc). - 7. Cardboard, paper and packaging. - 8. Bitumen roofing materials. - 9. Plastics (eg, ABS, PVC). - 10. Carpet and/or pad. - 11. Gypsum board. - 12. Insulation. - 13. Paint. ## 1.2 RELATED WORK - A. Section 02 41 00, DEMOLITION. - B. Section 01 00 00, GENERAL REQUIREMENTS. ## 1.3 QUALITY ASSURANCE - A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction / Demolition waste includes products of the following: - 1. Excess or unusable construction materials. - 2. Packaging used for construction products. - 3. Poor planning and/or layout. - 4. Construction error. - 5. Over ordering. - 6. Weather damage. - 7. Contamination. - 8. Mishandling. - 9. Breakage. - B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction. - C. Contractor shall develop and implement procedures to reuse and recycle new materials to a minimum of 50 percent. - D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor. - E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org provides a Construction Waste Management Database that contains information on companies that haul. Collect, and process recyclable debris from construction projects. - F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials. - G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages. - H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken. #### 1.4 TERMINOLOGY - A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations. - B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products. - C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations. - D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components. - E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills). - F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation. - G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal. - H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site. - J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials. - K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal. - L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste. - 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving. - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products. - M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency. - N. Reuse: Materials that are recovered for use in the same form, on-site or off-site. - O. Return: To give back reusable items or unused products to vendors for credit. - P. Salvage: To remove waste materials from the site for resale or re-use by a third party. - Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling. - R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal. - S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling. # 1.5 SUBMITTALS - A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following: - B. Prepare and submit to the Contracting Officer's Representative (COR) a written demolition debris management plan. The plan shall include, but not be limited to, the following information: - 1. Procedures to be used for debris management. - 2. Techniques to be used to minimize waste generation. - 3. Analysis of the estimated job site waste to be generated: - a. List of each material and quantity to be salvaged, reused, recycled. - b. List of each material and quantity proposed to be taken to a landfill. - 4. Detailed description of the Means/Methods to be used for material handling. - a. On site: Material separation, storage, protection where applicable. - b. Off site: Transportation means and destination. Include list of materials. - 1) Description of materials to be site-separated and self-hauled to designated facilities. - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site. - c. The names and locations of mixed debris reuse and recycling facilities or sites. - d. The names and locations of trash disposal landfill facilities or sites. - e. Documentation that the facilities or sites are approved to receive the materials. - C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan. - D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling. ## 1.6 APPLICABLE PUBLICATIONS Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met. A. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction ## 1.7 RECORDS Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template. #### PART 2 PRODUCTS #### 2.1 MATERIALS - A. List of each material and quantity to be salvaged, recycled, reused. - B. List of each material and quantity proposed to be taken to a landfill. - C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings. #### PART 3 EXECUTION ## 3.1 COLLECTION - A. Provide all necessary containers, bins and storage areas to facilitate effective waste management. Containers shall be covered at all times while on the medical center property; kept clean and liquids shall not leak from the containers. - B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing. - C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations. - D. Disposal Chutes shall be misted at all times. # 3.2 DISPOSAL - A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations. - B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator. ## 3.3 REPORT A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered. Any request for partial # SECTION 02 82 11 TRADITIONAL ASBESTOS ABATEMENT # TABLE OF CONTENTS | PART 1 - | GENERAL1 | |-----------|--| | 1.1 SUMM | ARY OF THE WORK1 | | 1.1.1 | CONTRACT DOCUMENTS AND RELATED REQUIREMENTS1 | | 1.1.2 | EXTENT OF WORK | | 1.1.3 | RELATED WORK3 | | 1.1.4 | TASKS4 | | 1.1.5 | CONTRACTORS USE OF PREMISES | | 1.2 VARIA | ATIONS IN QUANTITY4 | | 1.3 STOP | ASBESTOS REMOVAL5 | | 1.4 DEFI | NITIONS5 | | 1.4.1 | GENERAL5 | | 1.4.2 | GLOSSARY6 | | 1.4.3 | REFERENCED STANDARDS ORGANIZATIONS | | 1.5 APPL | ICABLE CODES AND REGULATIONS15 | | 1.5.1 | GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS15 | | 1.5.2 | Asbestos Abatement CONTRACTOR RESPONSIBILITY16 | | 1.5.3 | FEDERAL REQUIREMENTS | | | STATE REQUIREMENTS16 | | 1.5.5 | STANDARDS | | 1.5.6 | EPA GUIDANCE DOCUMENTS | | 1.5.7 | NOTICES | | 1.5.8 | PERMITS/LICENSES | | 1.5.9 | POSTING AND FILING OF REGULATIONS | | 1.5.1 | O VA RESPONSIBILITIES18 | | 1.5.1 | 1 SITE SECURITY18 | | 1.5.1 | 2 EMERGENCY ACTION PLAN AND ARRANGEMENTS | | 1.5.1 | 3 PRE-CONSTRUCTION MEETING | | 1.6 PROJ | ECT COORDINATION21 | | 1.6.1 | PERSONNEL21 | | 1.7 RESP | IRATORY PROTECTION22 | | 1.7.1 | GENERAL - RESPIRATORY PROTECTION PROGRAM22 | | 1.7.2 | RESPIRATORY PROTECTION PROGRAM COORDINATOR22 | | 1.7.3 | SELECTION AND USE OF RESPIRATORS23 | | 1.7.4 | MINIMUM RESPIRATORY PROTECTION23 | | 1.7.5 | MEDICAL WRITTEN OPINION23 | | 176 | DECDIDATED FIT TECT | | | 1.7.7 | RESPIRATOR FIT CHECK | . 23 | |-----|--------|--|------| | | 1.7.8 | MAINTENANCE AND CARE OF RESPIRATORS | . 23 | | | 1.7.9 | SUPPLIED AIR SYSTEMS | . 23 | | 1.8 | WORKI | ER PROTECTION | . 24 | | | 1.8.1 | TRAINING OF ABATEMENT PERSONNEL | . 24 | | | 1.8.2 | MEDICAL EXAMINATIONS | . 24 | | | 1.8.3 | PERSONAL PROTECTIVE EQUIPMENT | . 24 | | | 1.8.4 | REGULATED AREA ENTRY PROCEDURE | . 24 | | | 1.8.5 | DECONTAMINATION PROCEDURE - PAPR | . 25 | | | 1.8.6 | REGULATED AREA REQUIREMENTS | . 25 | | 1.9 | DECO | NTAMINATION FACILITIES | . 26 | | | 1.9.1 | DESCRIPTION | . 26 | | | 1.9.2 | GENERAL REQUIREMENTS | . 26 | | | 1.9.3 | TEMPORARY FACILITIES TO THE PDF and W/EDF | . 26 | | | 1.9.4 | PERSONNEL DECONTAMINATION FACILITY (PDF) | . 26 | | | 1.9.5 | WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF) | . 29 | | | 1.9.6 | WASTE/EQUIPMENT DECONTAMINATION PROCEDURES | . 30 | | PAR | т 2 - | PRODUCTS, MATERIALS AND EQUIPMENT | . 30 | | 2.1 | MATE | RIALS AND EQUIPMENT | . 30 | | | 2.1.1 | GENERAL REQUIREMENTS | . 30 | | | 2.1.2 | NEGATIVE PRESSURE FILTRATION SYSTEM | . 32 | | | 2.1.3 | DESIGN AND LAYOUT | . 32 | | | 2.1.4 | NEGATIVE AIR MACHINES (HEPA UNITS) | . 33 | | | 2.1.5 | PRESSURE DIFFERENTIAL | . 34 | | | 2.1.6 | MONITORING | . 34 | | | 2.1.7 | AUXILIARY GENERATOR | . 34 | | | 2.1.8 | SUPPLEMENTAL MAKE-UP AIR INLETS | . 34 | | | 2.1.9 | TESTING THE SYSTEM | . 35 | | | 2.1.10 | D DEMONSTRATION OF THE NEGATIVE AIR PRESSURE SYSTEM | . 35 | | | 2.1.1 | 1 USE OF SYSTEM DURING ABATEMENT OPERATIONS | . 35 | | | 2.1.12 | 2 DISMANTLING THE SYSTEM | . 36 | | 2.2 | CONTA | AINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA | . 36 | | | 2.2.1 | GENERAL | . 36 | | | 2.2.2 | PREPARATION PRIOR TO SEALING THE REGULATED AREA | . 36 | | | 2.2.3 | CONTROLLING ACCESS TO THE REGULATED AREA | . 36 | | | 2.2.4 | CRITICAL BARRIERS | . 37 | | | 2.2.5 | PRIMARY BARRIERS | . 37 | | | 2.2.6 | SECONDARY BARRIERS | . 37 | | | 2.2.7 | EXTENSION OF THE REGULATED AREA | . 37 | | 2.2.8 FIRESTOPPING | 37 | |--|-----| | 2.3 MONITORING, INSPECTION AND TESTING | 38 | | 2.3.1 GENERAL | 38 | | 2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT | 39 | | 2.3.3 MONITORING,
INSPECTION AND TESTING BY CONTRACTOR CPIH | 40 | | 2.4 STANDARD OPERATING PROCEDURES | 41 | | 2.5 SUBMITTALS | 41 | | 2.5.1 PRE-START MEETING SUBMITTALS | 41 | | 2.5.2 SUBMITTALS DURING ABATEMENT | 44 | | 2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT | 44 | | 2.6 ENCAPSULANTS | 45 | | 2.6.1 TYPES OF ENCAPSULANTS | 45 | | 2.6.2 PERFORMANCE REQUIREMENTS | 45 | | 2.6.3 CERTIFICATES OF COMPLIANCE | 45 | | PART 3 - EXECUTION | 46 | | 3.1 PRE-ABATEMENT ACTIVITIES | 46 | | 3.1.1 PRE-ABATEMENT MEETING | 46 | | 3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS | 46 | | 3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS | 47 | | 3.2 REGULATED AREA PREPARATIONS | 47 | | 3.3 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA GENERAL: | 48 | | 3.4 REMOVAL OF ACM | 48 | | 3.4.1 WETTING acm | 48 | | 3.4.2 SECONDARY BARRIER AND WALKWAYS | 49 | | 3.4.3 WET REMOVAL OF ACM | 49 | | 3.5 LOCKDOWN ENCAPSULATION | 50 | | 3.5.1 GENERAL | 50 | | 3.5.2 DELIVERY AND STORAGE | 50 | | 3.5.3 WORKER PROTECTION | 50 | | 3.5.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING | 51 | | 3.5.5 SEALING EXPOSED EDGES | 51 | | 3.6 DISPOSAL OF ACM WASTE MATERIALS | 51 | | 3.6.1 GENERAL | 51 | | 3.6.2 PROCEDURES | 51 | | 3.7 PROJECT DECONTAMINATION | 52 | | 3.7.1 GENERAL | 52 | | 3.7.2 REGULATED AREA CLEARANCE | 52 | | 3.7.3 WORK DESCRIPTION | 5.2 | | | | | 3.7.5 FIRST CLEANING53 | |---| | 3.7.6 PRE-CLEARANCE INSPECTION AND TESTING53 | | 3.7.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES53 | | 3.8 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING54 | | 3.8.1 GENERAL | | 3.8.2 FINAL VISUAL INSPECTION | | 3.8.3 FINAL AIR CLEARANCE TESTING54 | | 3.8.4 FINAL AIR CLEARANCE PROCEDURES54 | | 3.8.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF:55 | | 3.8.6 LABORATORY TESTING OF TEM SAMPLES55 | | 3.9 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE | | 3.9.1 COMPLETION OF ABATEMENT WORK56 | | 3.9.2 CERTIFICATE OF COMPLETION BY CONTRACTOR | | 3.9.3 WORK SHIFTS | | ATTACHMENT #157 | | ATTACHMENT #258 | | ATTACHMENT #359 | | ATTACHMENT #460 | #### PART 1 - GENERAL ## 1.1 SUMMARY OF THE WORK # 1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract do9cuments show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor. ## 1.1.2 EXTENT OF WORK - A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents. - B. Removal, clean-up and disposal of asbestos containing materials (ACM) and asbestos/waste contaminated elements in an appropriate regulated area for the following approximate quantities; - (90) linear feet of 4" diameter pipe insulation - (10) linear feet) of 6" diameter pipe insulation - (16) pipefittings 4" in diameter - (3) square feet of pipe insulation "patching material" - (1) pipefitting of 2" diameter; asbestos-containing seam mastic - C. Other Work- Preparatory to asbestos abatement work, specifically work to be completed prior to actual asbestos abatement work: (800) square feet of non-asbestos containing suspended acoustical ceiling tile system present at Autopsy Room to undergo removal and disposal as general construction waste- upon visual inspection revealing materials are not asbestos contaminated. This work will be completed under Partial Isolation (Dust Control) conditions. (18) total, electrical lighting fixtures equipped with PCB-containing ballast present at Morgue/Autopsy Room to undergo removal and disposal, in accordance with Veterans Administration standard operating procedures. ## Fluorescent lamp ballasts May contain polychlorinated biphenyls (PCBs). PCBs are a family of manmade chemicals that contain 209 individual compounds. Their composition can vary from mobile oily liquids to white crystalline solids to hard noncrystalline resins. They were used widely as coolants and lubricants in transformers, capacitors, and other electrical equipment. In fluorescent fixtures, PCBs were usually found in ballasts either within small capacitors or in the form of a black, tar-like compound. The Toxic Substances Control Act (TSCA), in 1976, banned the production of PCBs in the United States because there was evidence they accumulate in the environment and are a human health hazard. The following Federal guideline practice was used to determine if the ballasts contain PCBs at the Morgue/Autopsy Room: - All ballasts manufactured through 1979 contain PCBs. - Ballasts manufactured after 1979 that do not contain PCBs are labeled "NO PCBs". - If a ballast is not labeled "NO PCBs," assume it contains PCBs. The EPA regulations governing the use and disposal of PCBs are found in 40 CFR Part 761, "Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and use Prohibitions." PCB-containing ballasts that are intact and are not leaking can be disposed in a municipal solid waste landfill in properly packed and sealed 55-gallon drums. The Green Lights program, however, recommends use of high-temperature incineration, a chemical or hazardous waste landfill, or recycling as responsible waste management. PCB-containing ballasts that have been damaged and are leaking must be incinerated in an EPA-approved high temperature incinerator. (6) each, fluorescent light tubes present at Autopsy Room to undergo removal and disposal, in accordance with Veterans Administration standard operating procedures. # Fluorescent Light Tubes and High Intensity Discharge Lamps Fluorescent light tubes and HID lamps contain mercury, which is a Resource Conservation and Recovery Act (RCRA) characteristic hazardous waste (D009). The disposal of mercury-containing wastes is regulated by the Environmental Protection Agency (EPA) in Title 40 Code of Federal Regulations (40 CR), Part 261, "Identification and Listing of Hazardous Waste." Title 40 CDR 261 defines four characteristics, which can make a waste hazardous: ignitability, corrosivity, reactivity, and toxicity. Mercury has the characteristic of toxicity. This means if a representative sample of a waste containing mercury is analyzed using the EPA's Toxicity Characteristic Leaching Procedure (TCLP), and the mercury content of the leachate is equal to or exceeds 0.2 mg/L, the waste is classified as hazardous. Currently, fluorescent light tubes and HID lamps are neither listed nor excluded as hazardous wastes under EPA regulations. Prior to disposal, tubes and lamps can be handled and stored safely without being managed as hazardous waste. However, once the waste containing the fluorescent light tubes and HID lamps is declared hazardous, it must be handled as such with all the accompanying regulations and procedures. (200) square feet of glazed terra cotta block to gain access to asbestos-containing pipe insulation located within wall cavities of the Autopsy Room, to undergo removal and disposal as general construction debris NOTE: Partial Isolation (Dust Control) conditions require construction of critical barriers (primary isolation barriers at all openings to the work area), construction of personnel decontamination unit, construction of waste-load out decontamination unit, and negative-pressurization of work area established prior to commencement of "Other Work". ## 1.1.3 RELATED WORK - A. Section 07 84 00, FIRESTOPPING. - B. Section 02 41 00, DEMOLITION. - C. Division 09, FINISHES - D. Division 22, PLUMBING. #### 1.1.4 TASKS The work tasks are summarized briefly as follows: - A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and standard operating procedures for asbestos abatement work. - B. Abatement activities including removal, clean-up, and disposal of ACM waste, recordkeeping, security, monitoring, and inspections. - C. Cleaning and decontamination activities including final visual inspection, personnel exposure monitoring and certification of decontamination. #### 1.1.5 CONTRACTORS USE OF PREMISES - A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements. - B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved
pre-abatement work plan. Asbestos abatement drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings: The abatement contractor shall confine all activities (staging equipment, construction of decontamination facilities, ingress/egress to regulated work area, etc.) to the exterior double doors located at the north end of the Morgue/Autopsy Room's main hallway. # 1.2 VARIATIONS IN QUANTITY The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered materials and those prices shall be used for additional work required under the contractor. #### 1.3 STOP ASBESTOS REMOVAL If the Contracting Officer; their field representative; or the VPIH/CIH presents a written Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered air flow and adequately wet any exposed ACM. The Contractor shall not resume any asbestos removal activity until authorized to do so by the VA. A stop asbestos removal order may be issued at any time the VA determines abatement conditions/activities are not within specification requirements. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the industrial hygienist's time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person in writing to the VA representative and shall require the Contractor to immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities: - A. =/> 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area; - B. breach/break in regulated area barrier(s); - C. less than -0.02" WCG pressure in the regulated area; - D. serious injury/death at the site; - E. fire/safety emergency at the site; - F. respiratory protection system failure; - G. power failure or loss of wetting agent; or - H. any visible emissions observed outside the regulated area. #### 1.4 DEFINITIONS #### 1.4.1 GENERAL Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein. #### 1.4.2 GLOSSARY **Abatement** - Procedures to control fiber release from asbestos-containing materials, typically during removal. Includes removal, encapsulation, enclosure, demolition and renovation activities related to asbestos. ACE - Asbestos contaminated elements. ACM - Asbestos containing material. Aerosol - Solid or liquid particulate suspended in air. Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted. **Aggressive method** - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM. Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement. AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987. Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos. Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy) Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid. **Asbestos** - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below. Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos. Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos. Asbestos-containing waste material - Asbestos-containing material or asbestos contaminated objects requiring disposal. Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel. Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas. Authorized visitor - Any person approved by the VA; the contractor; or any government agency having jurisdiction over the regulated area. Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area. **Containment Barrier** - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area. Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area. **Primary Barrier** - Barriers placed over critical barriers and exposed directly to abatement work. **Secondary Barrier** - Any additional sheeting used to isolate and provide protection from debris during abatement work. **Breathing zone** - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose. **Bridging encapsulant** - An encapsulant that forms a layer on the surface of the ACM. **Building/facility owner** - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place. Bulk testing - The collection and analysis of suspect asbestos containing materials. Certified Industrial Hygienist (CIH) - One certified in practice of industrial hygiene by the American Board of Industrial Hygiene. An industrial hygienist Certified in Comprehensive Practice by the American Board of Industrial Hygiene. Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM). Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic. Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment. Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's industrial hygiene consultant (VPIH/CIH. **Closely resemble** - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace. Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor. Contractor's Professional Industrial Hygienist (CPIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of the PIH. **Count** - Refers to the fiber count or the average number of fibers greater than five microns in length per cubic centimeter of air. Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos. **Demolition** - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products. Disposal bag - Typically 6 mil thick siftproof, dustproof,
leaktight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements. Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width. **Drum** - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be siftproof, dustproof, and leaktight. Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment. **Encapsulant** - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers. Encapsulation - Treating ACM with an encapsulant. **Enclosure** - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material. **Equipment room** - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment. Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width ratio of at least 3 to 1. Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air. Filter - Media used in respirators, vacuums, or other machines to remove particulate from air. Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading. Friable asbestos containing material - Any material containing more than 1 percent asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure. **Glovebag** - Not more than a 60×60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled. High efficiency particulate air (HEPA) filter - A filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 microns or greater in diameter. **HEPA vacuum** - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers. Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application. HVAC - Heating, Ventilation and Air Conditioning Industrial hygienist - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA). Industrial hygienist technician - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix **Lockdown** - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers. National Emission Standards for Hazardous Air Pollutants (NESHAP's) - EPA's rule to control emissions of asbestos to the environment. Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL's. Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure. **Negative pressure respirator** - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air outside the respirator. Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure. Organic vapor cartridge - The type of cartridge used on air purifying respirators for organic vapor exposures. Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock. Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both. **Penetrating encapsulant** - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer. **Personal sampling/monitoring** - Representative air samples obtained in the breathing zone of the person using a cassette and battery operated pump to determine asbestos exposure. **Permissible exposure limit (PEL)** - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the PEL is 0.1 fibers per cc. **Polarized light microscopy (PLM)** - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample. Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, sometimes flame retardant in compliance with NFPA 241. Positive/negative fit check - A method of verifying the fit of a respirator by closing off the filters and breathing in or closing off the exhalation valve and breathing out while detecting leakage of the respirator. **Presumed ACM (PACM)** - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR $1926.1101 \ (k)(5)$. Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. **Project designer** - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5). **Protection factor** - A value assigned by OSHA/NIOSH to indicate the assigned protection a respirator should provide if worn properly. The number indicates the reduction of exposure level from outside to inside the respirator. Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs. Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor. Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL. Regulated ACM (RACM) - Friable ACM; Category I nonfriable ACM that has become friable; Category I nonfriable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II nonfriable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation. Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations. **Renovation** - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity. **Repair** - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates. **Shower room** - The portion of the PDF where personnel shower before leaving the regulated area. Also used for bag/drum decontamination in the EDF. Standard operating procedures (SOP's) - Asbestos work procedures required to be submitted by the contractor before work begins. Supplied air respirator (SAR) - A respirator that utilizes an air supply separate from the air in the regulated area. **Surfacing ACM** - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes. Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM. Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or
other structural components to prevent heat loss or gain. Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers. VA Industrial Hygienist (VPIH) - Department of Veterans Affairs Professional Industrial Hygienist. VA Certified Industrial Hygienist (VPCIH) - Department of Veteran's Affairs Professional Certified Industrial Hygienist. VA Representative - The VA official responsible for on-going project work. **Visible emissions** - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM or ACM waste material. Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area. Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material. Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material. Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects. #### 1.4.3 REFERENCED STANDARDS ORGANIZATIONS The following acronyms or abbreviations as referenced in contract/specification documents are defined to mean the associated names. Names and addresses may be subject to change. - A. VA Department of Veterans Affairs - 810 Vermont Avenue, NW Washington, DC 20420 B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888 C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300 D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400 E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420 F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900 G. CS Commercial Standard of the National Institute of Standards and Technology (NIST) U. S. Department of Commerce Government Printing Office Washington, DC 20420 H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949 I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420 J. MSHA Mine Safety and Health Administration Respiratory Protection Division Ballston Tower #3 Department of Labor Arlington, VA 22203 703-235-1452 K. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000 L. NEC National Electrical Code (by NFPA) M. NEMA National Electrical Manufacturer's Association 2101 L Street, N.W. Washington, DC 20037 N. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555 O. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236 P. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402 Q. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800 R. USA United States Army Army Chemical Corps Department of Defense Washington, DC 20420 #### 1.5 APPLICABLE CODES AND REGULATIONS # 1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS - A. All work under this contract shall be done in strict accordance with all applicable Federal, State of West Virginia, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification. - B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specification exists, the most stringent requirement(s) shall be utilized. - C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system. #### 1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work. #### 1.5.3 FEDERAL REQUIREMENTS Federal requirements which govern of asbestos abatement include, but are not limited to, the following regulations. - A. Occupational Safety and Health Administration (OSHA) - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos - 2. Title 29 CFR 1910.132 Personal Protective Equipment - 3. Title 29 CFR 1910.134 Respiratory Protection - 4. Title 29 CFR 1926 Construction Industry Standards - 5. Title 29 CFR 1910.20 Access to Employee Exposure and Medical Records - 6. Title 29 CFR 1910.1200 Hazard Communication - 7. Title 29 CFR 1910.151 Medical and First Aid - B. Environmental Protection Agency (EPA): - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants Asbestos. - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA) - C. Department of Transportation (DOT) Title 49 CFR 100 - 185 - Transportation ## 1.5.4 STATE REQUIREMENTS State requirements that apply to the asbestos abatement work, disposal, clearance, etc., include, but are not limited to, the following: State of West Virginia, Bureau of Public Health asbestos hazard control regulations (64CSR 63) #### 1.5.5 STANDARDS - A. Standards which govern asbestos abatement activities include, but are not limited to, the following: - 1. American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems Z88.2 Practices for Respiratory Protection. - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA Filter Units, 7th Edition. - B. Standards which govern encapsulation work include, but are not limited to the following: - 1. American Society for Testing and Materials (ASTM) - C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following: - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations. - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film. - 3. NFPA 101 Life Safety Code #### 1.5.6 EPA GUIDANCE DOCUMENTS - A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065. - B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024 - C. Asbestos Waste Management Guidance EPA 530-SW-85-007 - D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001 - E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990 # 1.5.7 NOTICES - A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows: - B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification is given to EPA, State, and Local authorities. ## 1.5.8 PERMITS/LICENSES A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations. #### 1.5.9 POSTING AND FILING OF REGULATIONS A. Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each in the clean room at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office. #### 1.5.10 VA RESPONSIBILITIES Prior to commencement of work: - A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment, and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area. - B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance. ## 1.5.11 SITE SECURITY - A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall
be established prior to commencing the project and be posted in the clean room of the decontamination unit. - B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately notify the VA. - C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry. - D. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized - asbestos waste from the regulated area, and emergency exits. Emergency exits shall \underline{not} be locked from the inside, however, they shall be sealed with poly sheeting and taped until needed. - E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance. - F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees. - G. The regulated area shall be locked during non-working hours and secured by VA security/police guards. ### 1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS - A. An Emergency Action Plan shall be developed by prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b). - B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, <u>must read and sign</u> these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures. - C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities. - D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided. - E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies. - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment. - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment. - F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone. - G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR. - H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the standard operating procedures during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem. ### 1.5.13 PRE-CONSTRUCTION MEETING Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) and the COTR to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the pre-start meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide: - A. Proof of Contractor licensing. - B. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented. - C. A list of all workers who will participate in the project, including experience and verification of training and accreditation. - D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training. - E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m). - F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C. - G. A copy of the Contractor's Standard Operating Procedures for Asbestos Abatement. In these procedures, the following information must be detailed, specific for this project. - 1. Regulated area preparation procedures; - Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d); - Decontamination area set-up/layout and decontamination procedures for employees; - 4. Abatement methods/procedures and equipment to be used; - 5. Personal protective equipment to be used; - H. At this meeting the Contractor shall provide all submittals as required. - I. Procedures for handling, packaging and disposal of asbestos waste. - J. Emergency Action Plan and Contingency Plan Procedures. #### 1.6 PROJECT COORDINATION The following are the minimum administrative and supervisory personnel necessary for coordination of the work. #### 1.6.1 PERSONNEL - A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements. - B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test. - C. Minimum qualifications for Contractor and assigned personnel are: - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive standard operating procedures for asbestos work; has adequate materials, equipment and supplies to perform the work. - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection. - 3. The Contractor Professional Industrial Hygienist (CPIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete standard operating procedure for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation. - 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the standard operating procedures of the Contractor; has one year of asbestos abatement experience; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license. ### 1.7 RESPIRATORY PROTECTION ### 1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM The Contractor shall develop and implement a Respiratory Protection Program (RPP) which is in compliance with the
January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.132;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written respiratory protection shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program. ## 1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating the program. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements. # 1.7.3 SELECTION AND USE OF RESPIRATORS The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualification. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors. ### 1.7.4 MINIMUM RESPIRATORY PROTECTION Minimum respiratory protection shall be a full face powered air purifying respirator when fiber levels are maintained consistently at or below 0.5 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use. #### 1.7.5 MEDICAL WRITTEN OPINION No employee shall be allowed to wear a respirator unless a physician has determined they are capable of doing so and has issued a current written opinion for that person. ### 1.7.6 RESPIRATOR FIT TEST All personnel wearing respirators shall have a current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit tests shall be done for PAPR's which have been put into a failure mode. ### 1.7.7 RESPIRATOR FIT CHECK The Competent Person shall assure that the positive/negative fit check is done each time the respirator is donned by an employee. Headcoverings must cover respirator headstraps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a fit check shall preclude that person from wearing a respirator until resolution of the problem. ## 1.7.8 MAINTENANCE AND CARE OF RESPIRATORS The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and care of respirators. # 1.7.9 SUPPLIED AIR SYSTEMS If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 - Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". #### 1.8 WORKER PROTECTION ### 1.8.1 TRAINING OF ABATEMENT PERSONNEL Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site. ### 1.8.2 MEDICAL EXAMINATIONS Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m)(4) shall be provided for each person and shall include in the opinion the person has been evaluated for working in a heat stress environment while wearing personal protective equipment and is able to perform the work. ### 1.8.3 PERSONAL PROTECTIVE EQUIPMENT Provide whole body clothing, head coverings, gloves and foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle. # 1.8.4 REGULATED AREA ENTRY PROCEDURE The Competent Person shall ensure that each time workers enter the regulated area, they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment. ## 1.8.5 DECONTAMINATION PROCEDURE - PAPR The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area. - A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room. - B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid asbestos fibers wile showering. The following procedure is required as a minimum: - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry. - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps. - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe. - C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!). - D. Shower and wash body completely with soap and water. Rinse thoroughly. - E. Rinse shower room walls and floor to drain prior to exiting. - F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing. #### 1.8.6 REGULATED AREA REQUIREMENTS The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator. ### 1.9 DECONTAMINATION FACILITIES ### 1.9.1 DESCRIPTION Provide each regulated area with separate personnel (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF. ### 1.9.2 GENERAL REQUIREMENTS All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area. ## 1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain $70^{\circ}F$ throughout the PDF and W/EDF. ### 1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF) The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room which is connected to the regulated area. The PDF must be sized to
accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering. - 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF. - 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste. - 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area. - 4. The PDF shall look like as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF is minimum of 2 layers of 6 mil opaque fire retardant poly. # 1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF) The Competent Person shall provide an W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following: - 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station. - 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly. - 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly. - 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided. - 5. The W/EDF shall be provided as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram. ## 1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES At washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room. ## PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT # 2.1 MATERIALS AND EQUIPMENT ### 2.1.1 GENERAL REQUIREMENTS Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH has submitted verification to the VA's representative. - A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable). - B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable materials cannot be stored inside buildings. - Replacement materials shall be stored outside of the regulated area until abatement is completed. - C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized place. - D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly. - E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mils shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout. - F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions. - G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly. - H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor. - I.
An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection. - J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material). - K. Disposal bags 2 layers of 6 mil, for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations. - L. The VA shall be provided a copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 Hazard Communication. Chlorinated compounds shall not be used with any spray adhesive or other product. Appropriate encapsulant(s) shall be provided. - M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room. - N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a hazard assessment conducted under 29 CFR 1910.132(d). #### 2.1.2 NEGATIVE PRESSURE FILTRATION SYSTEM The Contractor shall provide enough HEPA negative air machines to completely exchange the regulated area air volume 4 times per hour. The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to effect 4 air changes per hour. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. NIOSH has done extensive studies and has determined that negative air machines typically operate at $\sim 50\%$ efficiency. The contractor shall consider this in their determination of number of units needed to provide 4 air changes per hour. The contractor shall use 8 air changes per hour or double the number of machines based on their calculations or submit proof their machines operate at stated capacities at a 2" pressure drop across the filters. #### 2.1.3 DESIGN AND LAYOUT - A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following: - 1. Method of supplying power to the units and designation/location of the panels. - 2. Description of testing method(s) for correct air volume and pressure differential. - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch. ## 2.1.4 NEGATIVE AIR MACHINES (HEPA UNITS) - A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels. - B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan. - C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97% when challenged with 0.3 µm dioctylphthalate (DOP) particles. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow. - D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 μm or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 μm or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps. - E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation. - F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters. - G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriter's Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded. ### 2.1.5 PRESSURE DIFFERENTIAL The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification. #### 2.1.6 MONITORING The pressure differential shall be continuously monitored and recorded between the regulated area and the area outside the regulated area with a monitoring device that incorporates a strip chart recorder. The strip chart recorder shall become part of the project log and shall indicate at least -0.02" water column gauge for the duration of the project. ### 2.1.7 AUXILIARY GENERATOR If the building is occupied during abatement, provide an auxiliary gasoline/diesel generator located outside the building in an area protected from the weather. In the event of a power failure, the generator must automatically start and supply power to a minimum of 50% of the negative air machines in operation. ### 2.1.8 SUPPLEMENTAL MAKE-UP AIR INLETS Provide, as needed for proper air flow in the regulated area, in a location approved by the VA, openings in the plastic sheeting to allow outside air to flow into the regulated area. Auxiliary makeup air inlets must be located as far from the negative air machines as possible, off the floor near the ceiling, and away from the barriers that separate the regulated area from the occupied clean areas. Cover the inlets with weighted flaps which will seal in the event of failure of the negative pressure system. ## 2.1.9 TESTING THE SYSTEM The negative pressure system must be tested before any ACM is disturbed in any way. After the regulated area has been completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative pressure system to the VA using smoke tubes and a negative pressure gauge. Testing must also be done at the start of each work shift. ### 2.1.10 DEMONSTRATION OF THE NEGATIVE AIR PRESSURE SYSTEM The demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following: - A. Plastic barriers and sheeting move lightly in toward the regulated area. - B. Curtains of the decontamination units move in toward regulated area. - C. There is a noticeable movement of air through the decontamination units. Use the smoke tube to demonstrate air movement from the clean room to the shower room to the equipment room to the regulated area. - D. Use smoke tubes to demonstrate air is moving across all areas in which work is to be done. Use a differential pressure gauge to indicate a negative pressure of at least -0.02" across every barrier separating the regulated area from the rest of the building. Modify the system as necessary
to meet the above requirements. ### 2.1.11 USE OF SYSTEM DURING ABATEMENT OPERATIONS - A. Start units before beginning any disturbance of ACM occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a negative pressure differential of -0.02" water column gauge, for the duration of the work until a final visual clearance and final air clearance has been completed. - The negative air machines shall not be shut down for the duration of the project unless authorized by the VA, in writing. - B. Abatement work shall begin at a location farthest from the units and proceed towards them. If an electric failure occurs, the Competent Person shall stop all abatement work and immediately begin wetting all exposed asbestos materials for the duration of the power outage. Abatement work shall not resume until power is restored and all units are operating properly again. C. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air clearance has been completed for that regulated area. ### 2.1.12 DISMANTLING THE SYSTEM After completion of the final visual and final air clearance has been obtained by the VPIH/CIH, the units may be shut down. The units shall have been **completely decontaminated**, all pre-filters removed and disposed of as asbestos waste, asbestos labels attached and the units inlet/outlet sealed with 2 layers of 6 mil poly. ### 2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA ### 2.2.1 GENERAL Seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, shall immediately stop work and clean up the contamination at no additional cost to the VA. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 2.2.8; FIRESTOPPING. #### 2.2.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area. ### 2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure. NOTE: the asbestos abatement work to be conducted at the Morgue/Autopsy Room will not require construction of "free-standing" solid barriers; use of existing interior dividing and/or demising walls-adequately protected with poly sheeting, sealed at seams and terminations with waterproof, aggressively bonding tape- to seal the balance of the building from the abatement work area will occur. ### 2.2.4 CRITICAL BARRIERS Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6 mil fire retardant poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly. #### 2.2.5 PRIMARY BARRIERS A. Cover the regulated area with two layers of 6 mil fire retardant poly on the floors and two layers of 4 mil fire retardant poly on the walls, unless otherwise directed in writing by the VA representative. Floor layers must form a right angle with the wall and turn up the wall at least 300 mm (12"). Seams must overlap at least 1800 mm (6') and must be spray glued and taped. Install sheeting so that layers can be removed independently from each other. Mechanically support and seal with duct tape and glue all wall layers. ### 2.2.6 SECONDARY BARRIERS A loose layer of 6 mil shall be used as a drop cloth to protect the primary layers from debris generated during the abatement. This layer shall be replaced as needed during the work minimally once per work day. ## 2.2.7 EXTENSION OF THE REGULATED AREA If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met. ### 2.2.8 FIRESTOPPING - A. Through penetrations caused by cables, cable trays, pipes, sleeves must be firestopped with a fire-rated firestop system providing an air tight seal. - B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA representative immediately. All walls, floors and ceilings are - considered fire rated unless otherwise determined by the VA Representative or Fire Marshall. - C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed. ### 2.3 MONITORING, INSPECTION AND TESTING ### 2.3.1 GENERAL - A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. The CPIH shall is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification. - B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant to perform full project monitoring including but not limited to record keeping, baseline testing, area surveillance testing, and final air clearance testing on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their the in responsibility to perform work accordance contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, required, will be paid for by the Contractor. - C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH with review and approval of the VPIH/CIH. An agreement between the CPIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative. ### 2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT - A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks: - 1. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis. - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area
during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities. - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring. - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc. - 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications. - 6. Task 6: Issue certificate of decontamination for each regulated area and project report. - B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work. - C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated. ## 2.3.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH The Contractor's CPIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering is the exclusive responsibility the regulated area Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in air sampling and analysis. The IH Technician shall have a NIOSH 582 Course or equivalent and show proof. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA/State Contractor/Supervisor and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT. A daily log documenting all OSHA requirements for air monitoring for asbestos in 29 CFR 1926.1101(f), (g) Appendix A. This log shall be made available to representative and the VPIH/CIH. The log will contain, at a minimum, information on personnel or area sampled, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH responsibilities. #### 2.4 STANDARD OPERATING PROCEDURES The Contractor shall have established Standard Operating Procedures (SOP's) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The SOP's must be modified as needed to address specific requirements of this project and the specifications. The SOP's shall be submitted for review and approval prior to the start of any abatement work. The minimum topics and areas to be covered by the SOP's are: - A. Minimum Personnel Qualifications - B. Emergency Action Plan/Contingency Plans and Arrangements - C. Security and Safety Procedures - D. Respiratory Protection/Personal Protective Equipment Program and Training - E. Medical Surveillance Program and Recordkeeping - F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area - G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF) - H. Negative Pressure Systems Requirements - I. Monitoring, Inspections, and Testing - J. Removal Procedures for ACM - K. Removal of Contaminated Soil (not applicable) - L. Encapsulation Procedures for ACM - M. Disposal of ACM waste/equipment - N. Regulated Area Decontamination/Clean-up - O. Regulated Area Visual and Air Clearance - P. Project Completion/Closeout # 2.5 SUBMITTALS ## 2.5.1 PRE-START MEETING SUBMITTALS Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project: - A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart. - B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person. - C. Submit Standard Operating Procedures developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH. - D. Submit the specifics of the materials and equipment to be used for this project with brand names, model numbers, performance characteristics, pictures/diagrams, and number available for the following: - 1. Negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system. - 2. Waste water filtration system, shower system, containment barriers. - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, fire extinguishers. - 4. Respirators, protective clothing, personal protective equipment. - 5. Fire safety equipment to be used in the regulated area. - E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided. - F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements. - G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. - H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation. - 1. Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; Completion Date - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution - 3. List asbestos regulatory citations, penalties, damages paid and legal actions taken against the company in the last 3 years. Provide copies and all information needed for verification. - I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations. - 1. CPIH: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of SOP's developed; medical opinion; current respirator fit test. - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects as Competent Person/Supervisor; а worker; certificates, as licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion; current respirator fit test. - 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical
opinion; current respirator fit test. - J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain english the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of SOP's incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who does and how is air monitoring conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and standard operating procedures; copies of monitoring results of the five referenced projects listed and analytical method(s) used. - K. Rented equipment must be decontaminated prior to returning to the rental agency. - L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants and the MSDS. Provide application instructions also. ### 2.5.2 SUBMITTALS DURING ABATEMENT - A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWA's/EL's. Submit this information daily to the VPIH/CIH. - B. The CPIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work. - 1. Removal of any poly barriers. - 2. Visual inspection/testing by the CPIH prior to application of lockdown. - 3. Packaging and removal of ACM waste from regulated area. - 4. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis. # 2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT The CPIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. The report shall include a certificate of completion, signed and dated by the CPIH, in accordance with Attachment #1. All clearance and perimeter samples must be submitted. The VA Representative will retain the abatement report after completion of the project. #### 2.6 ENCAPSULANTS ## 2.6.1 TYPES OF ENCAPSULANTS - A. The following four types of encapsulants, if used, must comply with comply with performance requirements as stated in paragraph 2.6.2: - 1. Removal encapsulant used as a wetting agent to remove ACM. - 2. Bridging encapsulant provides a tough, durable coating on ACM. - 3. Penetrating encapsulant penetrates/encapsulates ACM at least 13 mm (1/2"). - 4. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal. # 2.6.2 PERFORMANCE REQUIREMENTS Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements: - A. General Requirements for all Encapsulants: - 1. ASTM E84: Flame spread of 25; smoke emission of 50. - 2. University of Pittsburgh Protocol: Combustion Toxicity; zero mortality. - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years. - 4. ASTM E96: Permeability minimum of 0.4 perms. - B. Bridging/Penetrating Encapsulants: - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft²). - 2. ASTM El19: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing). - 3. ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kg-mm (43 in/lb). - 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking. - C. Lockdown Encapsulants: - 1. ASTM El19: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member). - 2. ASTM E736: Bond Strength 48 kPa (100 lbs/ft²) (test compatibility with cementitious and fibrous fireproofing). - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application. ### 2.6.3 CERTIFICATES OF COMPLIANCE The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements for encapsulants when applied according to manufacturer recommendations. ### PART 3 - EXECUTION #### 3.1 PRE-ABATEMENT ACTIVITIES # 3.1.1 PRE-ABATEMENT MEETING The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed. ### 3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS Before any work begins on the construction of the regulated area, the Contractor will: - A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties. - B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of 10/95 A/E Quality Alert indicating the failure to identify asbestos in the areas listed. Make sure these areas are looked at/reviewed on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside chases/walls; transite piping/ductwork/sheets; behind radiators; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawl spaces (previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; steam line trench coverings. - C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination. The VA will be responsible for removal and relocation of property located within the Morgue/Autopsy Room. D. Inspect existing firestopping in the regulated area. Correct as needed. ## 3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS - A. Perform all preparatory work for the regulated area in accordance with the approved work schedule and with this specification. - B. Upon completion of all preparatory work, the CPIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved SOP's, especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance. - C. The CPIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative. - D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations. ### 3.2 REGULATED AREA PREPARATIONS - A. Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed ambient background levels. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure. - B. Shut down and lock out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA. - C. Shut down and lock out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil polyethylene disposal bags for staging and eventual disposal as asbestos waste. - D. The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition
throughout the abatement project. - E. The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention. - F. The VA will completely remove all movable objects within the regulated area. - G. The Contractor will pre-clean all <u>fixed objects</u> in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After precleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements. - H. The Contractor will pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestoscontaining materials during this pre-cleaning phase. ### 3.3 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA GENERAL: Follow requirements of Section 2.2 - Containment Barriers and Coverings. ## 3.4 REMOVAL OF ACM ### 3.4.1 WETTING ACM A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP's regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used - instead of amended water with written approval of the VA's representative. - B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water. - C. Removal Encapsulant: Provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during removal. ### 3.4.2 SECONDARY BARRIER AND WALKWAYS - A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet of the area where work is to done. Secure the secondary barrier with duct tape to prevent debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag. - B. Install walkways using 6 mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift. # 3.4.3 WET REMOVAL OF ACM A. Adequately and thoroughly wet the ACM to be removed prior to removal to reduce/prevent fiber release to the air. Adequate time must be allowed for the amended water to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except in the case of electrical hazards or a greater safety issue is possible! - B. If ACM does not wet well with amended water due to coating or jacketing, remove as follows: - 1. Mist work area continuously with amended water whenever necessary to reduce airborne fiber levels. - 2. Remove saturated ACM in small sections. Do not allow material to dry out. As material is removed, bag material while still wet into disposal bags. Twist tightly the bag neck, bend over (gooseneck) and seal with a minimum of three tight wraps of duct tape. Clean /decontaminate the outside of any residue and move to washdown station adjacent to W/EDF. - 3. Pipe Insulation: Remove the outer layer of wrap while spraying with amended water in order to saturate the ACM. Spray ACM with a fine mist of amended water or removal encapsulant. Allow time to saturate the material to the substrate. Cut bands holding pre-formed pipe insulation sections. Slit jacketing at the seams, remove and hand place in a disposal bag. Do not allow dropping to the floor. Remove molded pipefitting insulation (mud) in large pieces and hand place in a disposal bag. Remove any residue on pipe or fitting with a stiff bristle nylon brush. In locations where pipe fitting insulation is removed from fibrous glass or other non-asbestos insulated straight runs of pipe, remove fibrous material at least 6" from the point it contacts the ACM. ## 3.5 LOCKDOWN ENCAPSULATION #### 3.5.1 GENERAL Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, all surfaces shall be encapsulated with a bridging encapsulant. # 3.5.2 DELIVERY AND STORAGE Deliver materials to the job site in original, new and unopened containers bearing the manufacturer's name and label as well as the following information: name of material, manufacturer's stock number, date of manufacture, thinning instructions, application instructions and the MSDS for the material. #### 3.5.3 WORKER PROTECTION Before beginning work with any material for which an MSDS has been submitted, provide workers with any required personal protective equipment. The required personal protective equipment shall be used whenever exposure to the material might occur. In addition to OSHA/specification requirements for respiratory protection, a paint prefilter and an organic vapor cartridge, at a minimum, shall used in addition to the HEPA filter when a solvent based encapsulant is used. The CPIH shall be responsible for provision of adequate respiratory protection. ## 3.5.4 ENCAPSULATION OF PIPING - A. Apply two coats of encapsulant to the piping after all ACM has been removed. Apply in strict accordance with the manufacturer's instructions. Any deviation from the instructions must be approved by the VA's representative in writing prior to commencing the work. - B. Apply the encapsulant with an airless sprayer at a pressure and using a nozzle orifice as recommended by the manufacturer. Apply the first coat while the while the piping is still damp from the asbestos removal process, after passing the visual inspection. If the surface has been allowed to dry, wet wipe or HEPA vacuum prior to spraying with encapsulant. Apply a second coat over the first coat in strict conformance with the manufacturer's instructions. Color the encapsulant and contrast the color in the second coat so that visual confirmation of completeness and uniform coverage of each coat is possible. Adhere to the manufacturer's instructions for coloring. At the completion of the encapsulation, the surface must be a uniform third color produced by the mixture. # 3.5.5 SEALING EXPOSED EDGES Seal edges of ACM exposed by removal work which is inaccessible, such as a sleeve, wall penetration, etc., with two coats of encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the encapsulant. Apply in accordance with 3.5.4 (B). ### 3.6 DISPOSAL OF ACM WASTE MATERIALS # 3.6.1 GENERAL Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations. ### 3.6.2 PROCEDURES A. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures is this specification. Waste shall be double-bagged prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goosenecked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP's signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be reused. - B. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second bag. - C. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which
might tear poly bags shall be wrapped securely in burlap (or nylon reinforced poly bags) before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal. #### 3.7 PROJECT DECONTAMINATION ### 3.7.1 GENERAL - A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH. - B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal. - C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed. ## 3.7.2 REGULATED AREA CLEARANCE Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures. #### 3.7.3 WORK DESCRIPTION Decontamination includes the clearance of the air in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems. # 3.7.4 PRE-DECONTAMINATION CONDITIONS A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the loose 6 mil layer of poly removed and disposed of along with any gross debris generated by the work. - B. At the start of decontamination, the following shall be in place: - 1. Primary barriers consisting of 2 layers of 6 mil poly on the floor and 4 mil poly on the walls. - 2. Critical barriers consisting of 2 layers of 6 mil poly which is the sole barrier between the regulated area and openings to the rest of the building or outside. - 4. Decontamination facilities for personnel and equipment in operating condition and the negative pressure system in operation. ### 3.7.5 FIRST CLEANING Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping methods. Use each surface of a cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. If determined by the CPIH/VPIH/CIH additional cleaning(s) may be needed. # 3.7.6 PRE-CLEARANCE INSPECTION AND TESTING The CPIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification. ### 3.7.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification. Negative pressure shall be maintained in the regulated area during the lockdown application. ### 3.8 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING #### 3.8.1 GENERAL Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH starting after the final cleaning. ### 3.8.2 FINAL VISUAL INSPECTION Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done. ## 3.8.3 FINAL AIR CLEARANCE TESTING - A. After an acceptable final visual inspection by the VPIH/CIH, the VPIH/CIH will perform the final testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 1f/160 sf, 5 PCM samples may be collected for clearance. If work is equal to or more than 260 1f/160 sf, TEM sampling shall be done for clearance. TEM analysis shall be done in accordance with procedures in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All ADDITIONAL inspection and testing costs will be borne by the Contractor. - B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these #### 3.8.4 FINAL AIR CLEARANCE PROCEDURES specifications. - A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured with PCM, or 0.02 Asbestos Fibers/cc via TEM- for each air collected air sample or <70 Asbestos Structures/mm2-average of all air samples collected within the abatement work area (US EPA AHERA clearance criteria); in accordance with State of West Virginia regulations. - B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures: - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method. - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques. Samples will be collected on 0.8μ MCE filters for PCM analysis and 0.45μ Polycarbonate filters for TEM. A minimum of 1200 Liters of air shall be collected for clearance samples. Before pumps are started, initiate aggressive sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate. ## 3.8.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF: - A. The VPIH/CIH will perform clearance samples as indicated by the specification. - B. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area. - 3.8.6 CLEARANCE SAMPLING USING TEM EQUAL TO OR MORE THAN 260LF/160SF: TEM Clearance requires 13 samples be collected; 5 inside the regulated area; 5 outside the regulated area; and 3 field blanks. ## 3.8.7 LABORATORY TESTING OF PCM CLEARANCE SAMPLES The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the air samples. Samples will be sent daily by the VPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor. # 3.8.8 LABORATORY TESTING OF TEM SAMPLES Samples shall be sent by the VPIH/CIH to an accredited laboratory for analysis by TEM. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor. ## 3.9 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE ## 3.9.1 COMPLETION OF ABATEMENT WORK After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following: - A. Remove all equipment and materials from the project area. - B. Dispose of all packaged ACM waste as required. - C. Repair or replace all interior finishes damaged during the abatement work, as required. - D. Fulfill other project closeout requirements as required in this specification. ## 3.9.2 CERTIFICATE OF COMPLETION BY CONTRACTOR The CPIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area. #### 3.9.3 WORK SHIFTS All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday -Friday excluding Federal Holidays. Any change in the work
schedule must be approved in writing by the VA Representative. ## CERTIFICATE OF COMPLETION DATE: PROJECT NAME: VAMC/ADDRESS: - 1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building): which took place from / / / to / / - 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met. - 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work. - 4. That all employees of the Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection. - 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications. - 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below. - 7. That the negative pressure system was installed, operated and maintained in order to provide a minimum of 4 actual air changes per hour with a continuous -0.02" of water column pressure. Signature/Date: Signature/Date: #### CERTIFICATE OF WORKER'S ACKNOWLEDGMENT PROJECT NAME: DATE: PROJECT ADDRESS: ABATEMENT CONTRACTOR'S NAME: WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC. Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations. RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project. TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following: Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination. Signature: Printed Name: Social Security Number: Witness: # AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION VA PROJECT NAME AND NUMBER: VA MEDICAL FACILITY: ABATEMENT CONTRACTOR'S NAME AND ADDRESS: 1. I verify that the following individual Name: Social Security Number: who is proposed to be employed in asbestos abatement work associated with the above project by the named. Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Contractor at the following address. Address: - 2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project. - 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site. - 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH. Signature of CPIH: Date: Printed Name of CPIH: Signature of Contractor: Printed Name of Contractor: Date: # ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS | VA Project Location: | | |---|--| | VA Project #: | | | VA Project Description: | | | This form shall be signed by the Asbestos Abatement Asbestos Abatement Contractor's Competent Person(s) part the VA related to this Specification. If Contractor's/Competent Person(s) has not signed this allowed to work on-site. | rior to any start of work
the Asbestos Abatement | | I, the undersigned, have read VA's Asbestos Specificats abatement requirements. I understand the requirement Specification and agree to follow these requirements rules and regulations of OSHA/EPA/DOT and State/Local given ample opportunity to read the VA's Asbestos Sp given an opportunity to ask any questions regarding received a response related to those questions. I questions regarding the content, intent and requirement Specification. | nts of the VA's Asbestos as well as all required requirements. I have been ecification and have been ng the content and have do not have any further | | At the conclusion of the asbestos abatement, I will abatement work was done in accordance with the VA's A all ACM was removed properly and no fibrous residusurfaces. | Asbestos Specification and | | Abatement Contractor Owner's Signature | Date | | Abatement Contractor Competent Person(s) | Date | | | Date | | E N D | Date | | | | payment that does not include this report shall be returned to the contractor unapproved. - B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material. - C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal. - - - E N D - - - # AUTOPSY TABLE INSTALLATIONS Louis A Johnson VAMC, Clarksburg WVA VA Project Number 540-09-102 VA Contract Number 540-C-05003 # SECTION 02 41 19 SELECTIVE DEMOLITION ## PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract including General and Supplementary Condidtions and other Division 1 Section apply to work of this Section. #### 1.2 OCCUPANCY A. Owner will occupy portions of the building immediately adjacent to areas of selective demolition. Conduct selective demolition work in manner that will minimize disruption of Owner's normal operations. #### 1.3 CONDITIONS OF STRUCTURE A. Owner assumes no responsibility for actual condition of items or structures to be demolished. ## 1.4 DEFINITIONS - A. Remove: Remove and legally dispose of items except those indicated to be reinstalled, salvaged, or to remain the Owner's property. - B. Remove and Salvage: Items indicated to be removed and salvaged remain the Owner's property. Remove, clean, and pack or crate items to protect against damage. Identify contents of containers and deliver to Owner's designated storage area. - C. Remove and Reinstall: Remove items indicated; clean, service, and otherwise prepare them for reuse; store and protect against damage. Reinstall items in locations indicated. - D. Existing to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by the Architect, items may be removed to a suitable, protected storage location during selective demolition and then cleaned and reinstalled in their original locations. ## 1.5 DISPOSITION A. Except for items or materials indicated to be reused, salvaged, reinstalled, or otherwise indicated to remain the Owner's property, demolished materials shall become the Contractor's property and shall be removed from the site with further disposition at the Contractor's option. ## 1.6 PROTECTIONS - A. Provide temporary barricades and other forms of protection as required to protect the building's users from injury due to selective
demolition work. - 1. Provide protective measures as required to provide free and safe passage to and from occupied portions of building. - 2. Protect from damage existing finish work that is to remain in place and becomes exposed during demolition operations. - 3. Protect floors with suitable coverings when necessary. - 4. Provide temporary weather protection during interval between demolition and removal of existing construction on exterior surfaces and installation of new construction to ensure that no water leakage or damage occurs to structure or interior areas of existing building. - 5. Remove protections at completion of work. - B. Damages: Promptly repair damages caused to adjacent facilities by demolition work at no cost to Owner. - C. Traffic: Conduct selective demolition operations and debris removal in a manner to ensure minimum interference with roads, streets, walks, and other adjacent occupied or used facilities. # 1.7 UTILITIES - A. Maintain existing utilities indicated to remain in service and protect them against damage during demolition operations. - B. Inactive and abandoned utilities encountered in excavating and grading operations shall be removed, plugged or capped as directed. Report in writing the location of such abandoned utilities. ## PART 2 - PRODUCTS (Not Used) ## PART 3 - EXECUTION # 3.1 INSPECTION A. Prior to commencement of selective demolition work, inspect areas in which work will be performed. Advise Owner of any areas that could be misconstrued as damage resulting from selective demolition work; file with Owner's representative prior to starting work. ## 3.2 PROTECTION A. Cover and protect furniture, equipment, and fixtures from soilage or damage. # 3.3 DEMOLITION - A. Demolish and remove existing construction only to the extent required by new construction and as indicated. However, contractor is to patch any and all, seen and unseen, existing and new, holes, damage, etc. - B. Promptly patch and repair holes and damaged surfaces caused to adjacent construction by selective demolition operations. - C. Where repairs to existing surfaces are required, patch to produce surfaces suitable or new materials. - D. Restore exposed finishes of patched areas and extend finish restoration into adjoining construction to remain in a manner that eliminates evidence of patching and refinishing. - E. Patch and repair floor and wall surfaces in the new space where demolished walls or partitions extend one finished area into another. Provide a flush and even surface of uniform color and appearance. - F. Backfill and thoroughly compact voids created by removal of underground structures. - G. Rubble, combustible material or debris shall not be used in backfill material. # 3.4 DISPOSAL OF DEMOLISHED MATERIALS A. Remove debris, rubbish, and other materials resulting from demolition operations from building site in accordance with waste management plan. # 3.5 CLEANUP AND REPAIR - A. Upon completion of demolition work, remove tools, equipment, and demolished materials from site. Remove protections and leave interior areas broom clean. - B. Repair demolition performed in excess of that required. Return structures and surfaces to remain to condition existing prior to commencement of selective demolition work. Repair adjacent construction or surfaces soiled or damaged by selective demolition work. - - - - END - - - - # SECTION 04 05 13 MASONRY MORTARING #### PART 1 GENERAL #### 1.1 DESCRIPTION: Section specifies mortar materials and mixes. #### 1.2 RELATED WORK: A. Mortar used in Section 04 05 31, MASONRY TUCK POINTING. #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Laboratory Test Reports: - 1. Mortar, each type. - 2. Admixtures. - C. Manufacturer's Literature and Data: - 1. Cement, each kind. - 2. Hydrated lime. - 3. Admixtures. - 4. Liquid acrylic resin. # 1.4 PRODUCT DELIVERY, STORAGE AND HANDLING - A. Deliver masonry materials in original sealed containers marked with name of manufacturer and identification of contents. - B. Store masonry materials under waterproof covers on planking clear of ground, and protect damage from handling, dirt, stain, water and wind. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of specification to extent referenced. Publications are referenced in text by basic designation only. - B. American Society for Testing and Materials (ASTM): | C4004 | Organi | c Impurities | in | Fine | Aggregates | for | |-------|--------|--------------|----|------|------------|-----| | | Concre | te | | | | | C14404Aggregate for Masonry Mortar C150-05Portland Cement C27007Mortar for Unit Masonry | C307-03Tensile Strength of Chemical - Resistant | | | |--|--|--| | Mortar, Grouts, and Monolithic Surfacing | | | | C32100/R05Bond Strength of ChemicalResistant Mortars | | | | C34802Flexural Strength of Hydraulic Cement Mortars | | | | C59508Blended Hydraulic Cement | | | | C78007Preconstruction and Construction Evaluation of | | | | Mortars for Plain and Reinforced Unit Masonry | | | | C97905Pigments for Integrally Colored Concrete | | | | C1329-05Mortar Cement | | | ## PART 2 PRODUCTS #### 2.1 HYDRATED LIME ASTM C207, Type S. ## 2.2 AGGREGATE FOR MASONRY MORTAR - A. ASTM C144 and as follows: - 1. Light colored sand for mortar for laying face brick. - 2. White plastering sand meeting sieve analysis for mortar joints for pointing. - B. Test sand for color value in accordance with ASTM C40. Sand producing color darker than specified standard is unacceptable. # 2.3 BLENDED HYDRAULIC CEMENT ASTM C595, Type IS, IP. ## 2.4 MASONRY CEMENT A. ASTM C91. Type N, S, or M. # 2.5 MORTAR CEMEMT ASTM C1329, Type N, S or M. # 2.6 PORTLAND CEMENT A. ASTM C150, Type I. ## 2.7 LIQUID ACRYLIC RESIN A formulation of acrylic polymers and modifiers in liquid form designed for use as an additive for mortar to improve physical properties. ## 2.8 WATER Potable, free of substances that are detrimental to mortar, masonry, and metal. ## 2.9 MASONRY MORTAR - A. Conform to ASTM C270. - B. Admixtures: - 1. Do not use mortar admixtures, unless approved by Contracting Officer's Representative (COR). - 2. Submit laboratory test report showing effect of proposed admixture on strength, water retention, and water repellency of mortar. - 3. Do not use antifreeze compounds. ## C. Colored Mortar: - 1. Maintain uniform mortar color for exposed work throughout. - 2. Match mortar color in approved mock-up. - 3. Color of mortar for exposed work in alteration work to match color of existing mortar. ## PART 3 EXECUTION #### 3.1 MIXING - A. Mix in a mechanically operated mortar mixer. - 1. Mix mortar for at least three minutes but not more than five minutes. - B. Measure ingredients by volume. Measure by the use of a container of known capacity. - C. Mix water with dry ingredients in sufficient amount to provide a workable mixture which will adhere to vertical surfaces of masonry units. - D. Mortar that has stiffened because of loss of water through evaporations: - Re-tempered by adding water to restore to proper consistency and workability. - 2. Discard mortar that has reached its initial set or has not been used within two hours. ## E. Pointing Mortar: - Mix dry ingredients with enough water to produce a damp mixture of workable consistency which will retain its shape when formed into a ball - 2. Allow mortar to stand in dampened condition for one to 1-1/2 hours. - Add water to bring mortar to a workable consistency prior to application. # 3.2 MORTAR USE LOCATION A. Use Type N mortar for tuck pointing work. ---END--- ## SECTION 04 20 00 UNIT MASONRY #### PART 1 - GENERAL #### 1.1 DESCRIPTION This section specifies requirements for construction of masonry unit walls. Match existing conditions. ## 1.2 RELATED WORK - A. Mortars and grouts: Section 04 05 13, MASONRY MORTARING, Section 04 05 16, MASONRY GROUTING. - B. Steel lintels and shelf angles: Section 05 50 00, METAL FABRICATIONS. - C. Cavity insulation: Section 07 21 13, THERMAL INSULATION. - D. Flashing: Section 07 60 00, FLASHING AND SHEET METAL. - E. Sealants and sealant installation: Section 07 92 00, JOINT SEALANTS. - F. Color and texture of masonry units: Section 09 06 00, SCHEDULE FOR FINISHES. ## 1.3 SUBMITTALS A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. # B. Samples: - 1. Face brick, sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints. - 2. Concrete masonry units, when exposed in finish work. - Anchors, and ties, one each and joint reinforcing 1200 mm (48 inches) long. - 4. Structural clay tile units. - 5. Glazed structural clay facing tile, clipped panels (triplicate) of four wall units with base units, showing color range, each color and texture. ## C. Shop Drawings: - 1. Special masonry shapes. - 2. Drawings, showing reinforcement, applicable dimensions and methods of hanging soffit or lintel masonry and reinforcing masonry for embedment of anchors for hung fixtures. - Ceramic glazed structural facing tile or concrete masonry units for typical window and door openings, and, for special conditions as affected by structural conditions. - 4. Pre-built masonry panels, calculations, and details of connections showing design and erection prior to construction. - 5. Shop Drawings: Submit shop drawings for fabrication, bending, and placement of reinforcing bars. Comply with ACI 315. Show bar schedules, diagrams of bent bars, stirrup spacing, lateral ties and other arrangements and assemblies as required for fabrication and placement of reinforcement for unit masonry work. #### D. Certificates: - 1. Certificates signed by manufacturer, including name and address of contractor, project location, and the quantity, and date or dates of shipment of delivery to which certificate applies. - 2.
Indicating that the following items meet specification requirements: - a. Face brick. - b. Solid and load-bearing concrete masonry units, including fireresistant rated units. - c. Ceramic glazed facing brick. - d. Glazed structural clay facing tile. - e. Structural clay tile units. - 3. Testing laboratories facilities and qualifications of its principals and key personnel to perform tests specified. - E. Laboratory Test Reports: - 1. Brick for pre-built masonry panels. - 2. Ceramic glazed facing brick. - F. Manufacturer's Literature and Data: - 1. Anchors, ties, and reinforcement. - 2. Shear keys. - 3. Reinforcing bars. ## 1.4 SAMPLE PANEL - A. Before starting masonry, lay up a sample panel in accordance with Masonry Standards Joint Committee (MSJC) and Brick Industry Association (BIA). - 1. Use masonry units from random cubes of units delivered on site. - 2. Include reinforcing, ties, and anchors. - B. Use sample panels approved by Resident Engineer for standard of workmanship of new masonry work. - C. Use sample panel to test cleaning methods. ## 1.5 WARRANTY Warrant exterior masonry walls against moisture leaks and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be five years. #### 1.6 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM): A615/A615M-07Deformed and Plain Billet-Steel Bars for Concrete Reinforcement. A675/A675M-03Standard Specification for Steel Bars, Carbon, Hot-Wrought, Special Quality, Mechanical PropertiesC34-03 Structural Clay Load-Bearing Wall Tile C55-06Concrete Building Brick C56-05Structural Clay Non-Load-Bearing Tile C62-05Building Brick (Solid Masonry Units Made From Clay or Shale) C67-07Sampling and Testing Brick and Structural Clay Tile C90-06Load-Bearing Concrete Masonry Units C126-99Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units C216-07Facing Brick (Solid Masonry Units Made From Clay or Shale) C476-02Standard Specification for Grout for Masonry C612-04Mineral Fiber Block and Board Thermal Insulation C744-05Prefaced Concrete and Calcium Silicate Masonry Units. D1056-07Flexible Cellular Materials - Sponge or Expanded Rubber D2000-06Rubber Products in Automotive Applications D2240-05Rubber Property - Durometer Hardness D3574-05Flexible Cellular Materials-Slab, Bonded, and Molded Urethane Foams F1667-05Fasteners: Nails, Spikes and Staples C. Masonry Industry Council: All Weather Masonry Construction Manual, 2000. D. American Welding Society (AWS): D1.4-05 Structural Welding Code - Reinforcing Steel. E. Federal Specifications (FS): FF-S-107C-00Screws, Tapping and Drive F. Brick Industry Association - Technical Notes on Brick Construction (BIA): G. Masonry Standards Joint Committee; Specifications for Masonry Structures (ACI 530.1-05/ASCE 6-05/TMS 602-99) (MSJC). ## PART 2 - PRODUCTS ## 2.1 BRICK - A. Face Brick: - 1. ASTM C216, Grade SW, Type FBS. Match existing color. - 2. Brick when tested in accordance with ASTM C67: Classified slightly efflorescent or better. - 3. Size: - a. Match Existing brick - b. Match Existing brick - B. Building Brick: ASTM C62, Grade MW for backup and interior work; Grade SW where in contact with earth. # 2.2 CONCRETE MASONRY UNITS - A. Hollow and Solid Load-Bearing Concrete Masonry Units: ASTM C90. - 1. Unit Weight: Normal weight. - 2. Fire rated units for fire rated partitions. - 3. Sizes: Match existing - 4. For molded faces used as a finished surface, use concrete masonry units with uniform fine to medium surface texture unless specified otherwise. - 5. Use bullnose concrete masonry units at corners exposed in finished work with 25 mm (one inch) minimum radius rounded vertical exterior corners (bullnose units). - 6. Customized units: - a. Sound-Absorbing Units: - 1) Vertical slots in face to core areas. - 2) Acoustical absorption insert: Mineral fiber and metal septum, providing unit with NRC rating of 0.70. - b. Split-face Units: - 1) Split-Rib Units: Rib shapes as shown. - 2) Ground Face Units: - c. Glazed Face Units: Facing conform to ASTM C744. - B. Concrete Brick: ASTM C55. ## 2.3 CLAY TILE UNITS - A. Glazed structural Facing Tile: match existing - B. Structural Clay Load-Bearing Wall Tile: ASTM C34, Grade LBX. - C. Structural Clay Non-Load-Bearing Tile: ASTM C56, Grade NB. - D. Use keyed surface structural clay tile units required to receive plaster or mortar. #### 2.4 SHEAR KEYS - A. ASTM D2000, solid extruded cross-shaped section of rubber, neoprene, or polyvinyl chloride, with a durometer hardness of approximately 80 when tested in accordance with ASTM D2240, and a minimum shear strength of 3.5 MPa (500 psi). - B. Shear key dimensions: Approximately 70 mm by 8 mm for long flange and 38 mm by 16 mm for short flange (2-3/4 inches by 5/16 inch for long flange, and 1-1/2 inches by 5/8 inch for short flange). #### 2.5 REINFORCEMENT: - A. Steel Reinforcing Bars: ASTM A615, deformed bars, 420 MPa (Grade 60) for bars No. 10 to No. 57 (No. 3 to No. 18), except as otherwise indicated. - B. Where 6 mm diameter (No. 2) bars are shown, provide plain, round, carbon steel bars, ASTM A675, 550 MPa (Grade 80). - C. Shop-fabricate reinforcement bars which are shown to be bent or hooked. - D. Joint Reinforcement: - 1. Form from wire complying with ASTM A951. - 2. Galvanized after fabrication. - 3. Width of joint reinforcement 40 mm (1 5/8-inches) less than nominal width of masonry wall or partition. - 4. Cross wires welded to longitudinal wires. - 5. Joint reinforcing at least 3000 mm (10 feet) in length. - 6. Joint reinforcing in rolls is not acceptable. - 7. Joint reinforcing that is crimped to form drip is not acceptable. - 8. Maximum spacing of cross wires 400 mm (16 inches) to longitudinal wires. - 9. Ladder Design: - a. Longitudinal wires deformed 5 mm (0.20 inch) diameter wire. - b. Cross wires 4 mm (0.16 inch) diameter. - 10. Trussed Design: - a. Longitudinal and cross wires not less than 4 mm (0.16 inch nominal) diameter. - b. Longitudinal wires deformed. - 11. Multiple Wythes and Cavity wall ties: - a. Longitudinal wires 2.6 mm (0.10 inch), two in each wythe with ladder truss wires 2.6 mm (0.10 inch) overlay, welded to each longitudinal wire. - b. Longitudinal wires 4 mm (0.16 inch) with U shape 2.6 mm (0.10 inch) rectangular ties extending into other wythe not less than 75 mm (3 inches) spaced 400 mm o.c. (16 inches). Adjustable type with U shape tie designed to receive 4 mm (0.16 inch) pintle projecting into other wythe 75 mm (3 inches) minimum. # 2.6 ANCHORS, TIES, AND REINFORCEMENT - A. Steel Reinforcing Bars: ASTM A615M, deformed bars, grade as shown. - B. Joint Reinforcement: - 1. Form from wire complying with ASTM A951. - 2. Galvanized after fabrication. - 3. Width of joint reinforcement 40 mm (0.16 inches) less than nominal width of masonry wall or partition. - 4. Cross wires welded to longitudinal wires. - 5. Joint reinforcement at least 3000 mm (10 feet) in length. - 6. Joint reinforcement in rolls is not acceptable. - 7. Joint reinforcement that is crimped to form drip is not acceptable. - 8. Maximum spacing of cross wires 400 mm (16 inch) to longitudinal wires. - 9. Ladder Design: - a. Longitudinal wires deformed 5 mm (0.20 inch) diameter wire. - b. Cross wires 4 mm (0.16 inch) diameter. - 10. Trussed Design: - a. Longitudinal and cross wires not less than 4 mm (0.16 inch nominal) diameter. - b. Longitudinal wires deformed. - 11. Multiple Wythes and Cavity wall ties: - a. Longitudinal wires 4 mm (0.16 inch), two in each wythe with ladder truss wires 4 mm (0.16 inch) overlay, welded to each longitudinal wire. - b. Longitudinal wires 4 mm (0.16 inch) with U shape 4 mm (0.16 inch) rectangular ties extending into other wythe not less than 75 mm (3 inches) spaced 400 mm o.c. (16 inches). Adjustable type with U shape tie designed to receive 4 mm (0.16 inch) pintle projecting into other wythe 75 mm (3 inches min.). - C. Adjustable Veneer Anchor for Frame Walls: - 1. Two piece, adjustable anchor and tie. - 2. Anchor and tie may be either type; use only one type throughout. - 3. Loop Type: - a. Anchor: Screw-on galvanized steel anchor strap 2.75 mm (0.11 inch) by 19 mm (3/4 inch) wide by 225 mm (9 inches) long, with 9 mm (0.35 inch) offset and 100 mm (4 inch) adjustment. Provide 5 mm (0.20 inch) hole at each end for fasteners. - b. Ties: Triangular tie, fabricated of 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Ties long enough to engage the anchor and be embedded not less than 50 mm (2 inches) into the bed joint of the masonry veneer. - 4. Angle Type: - a. Anchor: Minimum 2 mm (16 gage) thick galvanized steel angle shaped anchor strap. Provide hole in vertical leg for fastener. Provide hole near end of outstanding leg to suit upstanding portion of tie. - b. Tie: Fabricate from 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Form "L" shape to be embedded not less than 50 mm (2 inches) into the bed joint of the masonry veneer and provide upstanding leg to fit through hole in anchor and be long enough to allow 50 mm (2 inches) of vertical adjustment. #### D. Dovetail Anchors: - 1. Corrugated steel dovetail anchors formed of 1.5 mm (0.0598 inch) thick by 25 mm (1 inch) wide galvanized steel, 90 mm (3-1/2 inches) long where used to anchor 100 mm (4 inch) nominal thick masonry units, 140 mm (5-1/2 inches) long for masonry units more than 100 mm (4 inches) thick. - 2. Triangular wire dovetail anchor 100 mm (4 inch) wide formed of 4 mm (9 gage) steel wire with galvanized steel dovetail insert. Anchor length to extend at least 75 mm (3 inches) into masonry, 25 mm (1 inch) into 40 mm (1-1/2 inch) thick units. - 3. Form
dovetail anchor slots from 0.6 mm (0.0239 inch) thick galvanized steel (with felt or fiber filler). ## E. Individual ties: 1. Rectangular ties: Form from 5 mm (3/16 inch) diameter galvanized steel rod to a rectangular shape not less than 50 mm (2 inches) wide by sufficient length for ends of ties to extend within 25 mm (1 inch) of each face of wall. Ties that are crimped to form drip are not permitted. # 2. Adjustable Cavity Wall Ties: - a. Adjustable wall ties may be used at Contractor's option. - b. Two piece type permitting up to 40 mm (1-1/2 inch) adjustment. - c. Form ties from 5 mm (3/16 inch) diameter galvanized steel wire. - d. Form one piece to a rectangular shape 105 mm (4-1/8 inches) wide by length required to extend into the bed joint 50 mm (2 inches). - e. Form the other piece to a 75 mm (3 inch) long by 75 mm (3 inch) wide shape, having a 75 mm (3 inch) long bent section for engaging the 105 mm (4-1/8 inch) wide piece to form adjustable connection. # F. Wall Ties, (Mesh or Wire): - 1. Mesh wall ties formed of ASTM A82, W0.5, 2 mm, (16 gage) galvanized steel wire 13 mm by 13 mm (1/2 inch by 1/2 inch) mesh, 75 mm (3 inches) wide by 200 mm (8 inches) long. - 2. Rectangular wire wall ties formed of W1.4, 3 mm, (9 gage) galvanized steel wire 50 mm (2 inches) wide by 200 mm (8 inches) long. ## G. Corrugated Wall Tie: - 1. Form from 1.5 mm (0.0598 inch) thick corrugated, galvanized steel 30 mm (1-1/4 inches) wide by lengths so as to extend at least 100 mm (4 inches) into joints of new masonry plus 38 mm (1-1/2 inch) turn-up. - 2. Provide 5 mm (3/16 inch) hole in turn-up for fastener attachment. ## H. Adjustable Steel Column Anchor: - 1. Two piece anchor consisting of a 6 mm (1/4 inch) diameter steel rod to be welded to steel with offset ends, rod to permit 100 mm (4 inch) vertical adjustment of wire anchor. - 2. Triangular shaped wire anchor 100 mm (4 inches) wide formed from 5 (3/16 inch) diameter galvanized wire, to extend at least 75 mm (3 inches) into joints of masonry. ## I. Adjustable Steel Beam Anchor: - 1. Z or C type steel strap, 30 mm (1 1/4 inches) wide, 3 mm (1/8 inch) thick. - 2. Flange hook not less than 38 mm (1 1/2 inches) long. - 3. Length to embed in masonry not less than 50 mm (2 inches) in 100 mm (4 inch) nominal thick masonry and 100 mm (4 inches) in thicker masonry. - 4. Bend masonry end not less than 40 mm (1 1/2 inches). # J. Ridge Wall Anchors: - 1. Form from galvanized steel not less than 25 mm (1 inch) wide by 5 mm (3/16 inch) thick by 600 mm (24 inches) long, plus 50 mm (2 inch) bends. - 2. Other lengths as shown. ## 2.7 PREFORMED COMPRESSIBLE JOINT FILLER - A. Thickness and depth to fill the joint as specified. - B. Closed Cell Neoprene: ASTM D1056, Type 2, Class A, Grade 1, B2F1. - C. Non-Combustible Type: ASTM C612, Class 5, 1800 degrees F. # 2.8 ACCESSORIES - A. Weep Hole Wicks: Glass fiber ropes, 10 mm (3/8 inch) minimum diameter, 300 mm (12 inches) long. - B. Box Board: - 1. Mineral Fiber Board: ASTM C612, Class 1. - 2. 25 mm (1 inch) thickness. - 3. Other spacing material having similar characteristics may be used subject to the Resident Engineer's approval. - C. Masonry Cleaner: - 1. Detergent type cleaner selected for each type masonry used. - 2. Acid cleaners are not acceptable. - 3. Use soapless type specially prepared for cleaning brick or concrete masonry as appropriate. #### D. Fasteners: - 1. Concrete Nails: ASTM F1667, Type I, Style 11, 19 mm (3/4 inch) minimum length. - 2. Masonry Nails: ASTM F1667, Type I, Style 17, 19 mm (3/4 inch) minimum length. - 3. Screws: FS-FF-S-107, Type A, AB, SF thread forming or cutting. ## 2.9 PRE-BUILT MASONRY PANELS - A. Shop fabricated under a controlled environment, in a plant capable of manufacturing, transporting, and storing the finished panels. - B. Fabricate panels to size and configuration shown, conforming to approved shop drawing. - C. Fabricate panels in jigs. - D. Reject panels failing to meet these requirements. - 1. Plumb head joints. - 2. Panel dimensions tolerances: Accurate to plus 0 mm (0 inch) and minus 6 mm (1/4 inch) in 3600 mm (12 feet). - 3. Panels true, free of warp or rack, and plumb on base. ## PART 3 - EXECUTION # 3.1 JOB CONDITIONS # A. Protection: - 1. Cover tops of walls with nonstaining waterproof covering, when work is not in progress. Secure to prevent wind blow off. - 2. On new work protect base of wall from mud, dirt, mortar droppings, and other materials that will stain face, until final landscaping or other site work is completed. ## B. Cold Weather Protection: - 1. Masonry may be laid in freezing weather when methods of protection are utilized. - 2. Comply with MSJC and "Hot and Cold Weather Masonry Construction Manual". ## 3.2 CONSTRUCTION TOLERANCES - A. Lay masonry units plumb, level and true to line within the tolerances as per MSJC requirements and as follows: - B. Maximum variation from plumb: - 1. In 3000 mm (10 feet) 6 mm (1/4 inch). - 2. In 6000 mm (20 feet) 10 mm (3/8 inch). - 3. In 12 000 mm (40 feet) or more 13 mm (1/2 inch). - C. Maximum variation from level: - 1. In any bay or up to 6000 mm (20 feet) 6 mm (1/4 inch). - 2. In 12 000 mm (40 feet) or more 13 mm (1/2 inch). - D. Maximum variation from linear building lines: - 1. In any bay or up to 6000 mm (20 feet) 13 mm (1/2 inch). - 2. In 12 000 mm (40 feet) or more 19 mm (3/4 inch). - E. Maximum variation in cross-sectional dimensions of columns and thickness of walls from dimensions shown: - 1. Minus 6 mm (1/4 inch). - 2. Plus 13 mm (1/2 inch). - F. Maximum variation in prepared opening dimensions: - 1. Accurate to minus 0 mm (0 inch). - 2. Plus 6 mm (1/4 inch). ## 3.3 INSTALLATION GENERAL - A. Keep finish work free from mortar smears or spatters, and leave neat and clean. - B. Anchor masonry as specified in Paragraph, ANCHORAGE. - C. Wall Openings: - 1. Fill hollow metal frames built into masonry walls and partitions solid with mortar as laying of masonry progresses. - 2. If items are not available when walls are built, prepare openings for subsequent installation. - D. Tooling Joints: - 1. Do not tool until mortar has stiffened enough to retain thumb print when thumb is pressed against mortar. - 2. Tool while mortar is soft enough to be compressed into joints and not raked out. - Finish joints in exterior face masonry work with a jointing tool, and provide smooth, water-tight concave joint unless specified otherwise. - 4. Tool Exposed interior joints in finish work concave unless specified otherwise. - E. Partition Height: - 1. Extend partitions at least 100 mm (four inches) above suspended ceiling or to overhead construction where no ceiling occurs. - 2. Extend following partitions to overhead construction. - a. Where noted smoke partitions, FHP (full height partition), and FP (fire partition) and smoke partitions (SP) on drawings. - b. Both walls at expansion joints. - c. Corridor walls. - d. Walls at stairway and stair halls, elevators, dumbwaiters, trash and laundry chute shafts, and other vertical shafts. - e. Walls at refrigerator space. - g. Reinforced masonry partitions - 3. Extend finish masonry partitions at least four-inches above suspended ceiling and continue with concrete masonry units or structural clay tile to overhead construction: ## F. Lintels: - 1. Lintels are not required for openings less than 1000 mm (3 feet 4 inches) wide that have hollow metal frames. - 2. Openings 1025 mm (3 feet 5 inches) wide to 1600 m (5 feet 4 inches) wide with no structural steel lintel or frames, require a lintel formed of concrete masonry lintel or bond beam units filled with grout per ASTM C476 and reinforced with 1- #15m (1-#5) rod top and bottom for each 100 mm (4 inches) of nominal thickness unless shown otherwise. - 3. Precast lintels of 25 Mpa (3000 psi) concrete, of same thickness as partition, and with one Number 5 deformed bar top and bottom for each 100 mm (4 inches) of nominal thickness, may be used in lieu of reinforced CMU masonry lintels. - 4. Use steel lintels, for openings over 1600 m (5 feet 4 inches) wide, brick masonry, and elevator openings unless shown otherwise. - Doors having overhead concealed door closers require a steel lintel, and a pocket for closer box. - 6. Length for minimum bearing of 100 mm (4 inches) at ends. - 7. Build masonry openings or arches over wood or metal centering and supports when steel lintels are not used. - G. Wall, Furring, and Partition Units: - 1. Lay out field units to provide for running bond of walls and partitions, with vertical joints in second course centering on first course units unless specified otherwise. - 2. Align head joints of alternate vertical courses. - 3. At sides of openings, balance head joints in each course on vertical center lines of openings. - 4. Use no piece shorter than 100 mm (4 inches) long. - 5. On interior partitions provide a 6 mm (1/4 inch) open joint for caulking between existing construction, exterior walls, concrete work, and abutting masonry partitions. - 6. Use not less than 100 mm (4 inches) nominal thick masonry for free standing furring unless shown otherwise. - 7. Do not abut existing plastered surfaces except suspended ceilings with new masonry partitions. - H. Use not less than 100 mm (4 inches) nominal thick masonry for fireproofing steel columns unless shown otherwise. - I. Before connecting new masonry with previously laid, remove loosened masonry or mortar, and clean and wet work in place as specified under wetting. - J. When new masonry partitions start on existing floors, machine cut existing floor finish material down to concrete surface. - K. Structural Steel Encased in Masonry: - 1. Where structural steel is encased in masonry and the voids between the steel and masonry are filled with mortar, provide a minimum 25 mm (1 inch) mortar free expansion space between the masonry and the steel by applying a box board material to the steel before the masonry is laid. - 2. Do not place spacing material where steel is bearing on
masonry or masonry is bearing on steel. ## L. Chases: - Do not install chases in masonry walls and partitions exposed to view in finished work, including painted or coated finishes on masonry. - 2. Masonry 100 mm (4 inch) nominal thick may have electrical conduits 25 mm (1 inch) or less in diameter when covered with soaps, or other finishes. - 3. Full recess chases after installation of conduit, with mortar and finish flush. - 4. When pipes or conduits, or both occur in hollow masonry unit partitions retain at least one web of the hollow masonry units. - M. Wetting and Wetting Test: - 1. Test and wet brick or clay tile in accordance with BIA 11B. - 2. Do not wet concrete masonry units or glazed structural facing tile before laying. - N. Temporary Formwork: Provide formwork and shores as required for temporary support of reinforced masonry elements. - O. Construct formwork to conform to shape, line and dimensions shown. Make sufficiently tight to prevent leakage of mortar, grout, or concrete (if any). Brace, tie and support as required to maintain position and shape during construction and curing of reinforced masonry. - P. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and all other reasonable temporary loads that may be placed on them during construction. - Q. Allow not less than the following minimum time to elapse after completion of members before removing shores or forms, provided suitable curing conditions have been obtained during the curing period. - 1. 10 days for girders and beams. - 2. 7 days for slabs. - 3. 7 days for reinforced masonry soffits. ## 3.4 ANCHORAGE - A. Veneer to Frame Walls: - 1. Use adjustable veneer anchors. - 2. Fasten anchor to stud through sheathing with self drilling and tapping screw, one at each end of loop type anchor. - 3. Space anchors not more than 400 mm (16 inches) on center vertically at each stud. - B. Veneer to Concrete Walls: - 1. Install dovetail slots in concrete vertically at 600 mm (2 feet) on centers - 2. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals. - 3. Anchor new masonry facing to existing concrete with corrugated wall ties spaced at 400 mm, (16 inch) maximum vertical intervals, and at 600 mm (2 feet) maximum horizontal intervals. Fasten ties to concrete with power actuated fasteners or concrete nails. - C. Masonry Facing to Backup and Cavity Wall Ties: - 1. Use individual ties for new work. - 2. Stagger ties in alternate courses, and space at 400 mm (16 inches) maximum vertically, and 600 mm (2 feet) horizontally. - 3. At openings, provide additional ties spaced not more than 900 mm (3 feet) apart vertically around perimeter of opening, and within 300 mm (12 inches) from edge of opening. - 4. Anchor new masonry facing to existing masonry with corrugated wall ties spaced at 400 mm (16 inch) maximum vertical intervals and at every second masonry unit horizontally. Fasten ties to masonry with masonry nails. - 5. Option: Use joint reinforcing for multiple wythes and cavity wall ties spaced not more than 400 mm (16 inches) vertically. - 6. Tie interior and exterior wythes of reinforced masonry walls together with individual ties. Provide ties at intervals not to exceed 600 mm (24 inches) on center horizontally, and 400 mm (16 inches) on center vertically. Lay ties in the same line vertically in order to facilitate vibrating of the grout pours. ## D. Anchorage of Abutting Masonry: - Anchor interior 100 mm (4 inch) thick masonry partitions to exterior masonry walls with wall ties. Space ties at 600 mm (2 foot) maximum vertical intervals. Extend ties 100 mm (4 inches) minimum into masonry. - 2. Anchor interior masonry bearing walls or interior masonry partitions over 100 mm (4 inches) thick to masonry walls with rigid wall anchors spaced at 400 mm (16 inch) maximum vertical intervals. - 3. Anchor abutting masonry walls and partitions to concrete with dovetail anchors. Install dovetail slots vertically in concrete at centerline of abutting wall or partition. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals. Secure anchors to existing wall with two 9 mm (3/8 inch) by 75 mm (3 inch) expansion bolts or two power-driven fasteners. - 4. Anchor abutting interior masonry partitions to existing concrete and existing masonry construction, with corrugated wall ties. Extend ties at least 100 mm (4 inches) into joints of new masonry. Fastened to existing concrete and masonry construction, with powder actuated drive pins, nail or other means that provides rigid anchorage. Install anchors at 400 mm (16 inch) maximum vertical intervals. ## E. Masonry Furring: 1. Anchor masonry furring less than 100 mm (4 inches) nominal thick to masonry walls or to concrete with corrugated wall ties or dovetail anchors. - 2. Space not over 600 mm (2 feet) on centers in both directions. - F. Anchorage to Steel Beams or Columns: - 1. Use adjustable beam anchors on each flange. - 2. At columns weld the 6 mm (1/4 inch) steel rod to steel columns at 300 mm (12 inch) intervals, and place wire ties in masonry courses at 400 mm (16 inches) maximum vertically. # 3.5 REINFORCEMENT #### A. Joint Reinforcement: - Use as joint reinforcement in CMU wythe of combination brick and CMU, cavity walls, and single wythe concrete masonry unit walls or partitions. - 2. Reinforcing may be used in lieu of individual ties for anchoring brick facing to CMU backup in exterior masonry walls. - 3. Brick veneer over frame backing walls does not require joint reinforcement. - 4. Locate joint reinforcement in mortar joints at 400 mm (16 inch) maximum vertical intervals. - 5. Additional joint reinforcement is required in mortar joints at both 200 mm (8 inches) and 400 (16 inches) above and below windows, doors, louvers and similar openings in masonry, except where other type anchors are required for anchorage of masonry to concrete structure. - 6. Joint reinforcement is required in every other course of stack bond CMU masonry. - 7. Wherever brick masonry is backed up with stacked bond masonry, joint reinforcement is required in every other course of CMU backup, and in corresponding joint of facing brick. ## B. Steel Reinforcing Bars: - Install in cells of hollow masonry units where required for vertical reinforcement and in bond beam units for lintels and bond beam horizontal reinforcement. Install in wall cavities of reinforced masonry walls where shown. - 2. Use grade 60 bars if not specified otherwise. #### 3. Bond Beams: a. Form Bond beams of load-bearing concrete masonry units filled with ASTM C476 grout and reinforced with 2-#15m (#5) reinforcing steel unless shown otherwise. Do not cut reinforcement. > b. Brake bond beams only at expansion joints and at control joints, if shown. #### 4. Stack Bond: - a. Locate additional joint reinforcement in vertical and horizontal joints as shown. - b. Anchor vertical reinforcement into the foundation or wall or bond beam below and hold in place. - c. Provide temporary bracing for walls over 8 ft. tall until permanent horizontal bracing is completed. ## 5. Grout openings: - a. Leave cleanout holes in double wythe walls during construction by omitting units at the base of one side of the wall. - b. Locate 75 mm \times 75 mm (3 in. \times 3 in.) min. clean-out holes at location of vertical reinforcement. - c. Keep grout space clean of mortar accumulation and sand debris. Clean the grout space every day using a high pressure jet stream of water, or compressed air, or industrial vacuum, or by laying wood strips on the metal ties as the wall is built. If wood strips are used, lift strips with wires as the wall progresses and before placing each succeeding course of wall ties. # 3.6 BRICK EXPANSION AND CMU CONTROL JOINTS. - A. Provide brick expansion (BEJ) and CMU control (CJ) joints where shown on drawings. - B. Keep joint free of mortar and other debris. - C. Where joints occur in masonry walls. - 1. Install preformed compressible joint filler in brick wythe. - 2. Install cross shaped shear keys in concrete masonry unit wythe with preformed compressible joint filler on each side of shear key unless otherwise specified. - 3. Install filler, backer rod, and sealant on exposed faces. - D. Use standard notched concrete masonry units (sash blocks) made in full and half-length units where shear keys are used to create a continuous vertical joint. Alter Structural clay tile units to accommodate shear key flanges. - E. Interrupt steel joint reinforcement at expansion and control joints unless otherwise shown. - F. Fill opening in exposed face of expansion and control joints with sealant as specified in Section 07 92 00, JOINT SEALANTS. ## 3.7 BUILDING EXPANSION AND SEISMIC JOINTS - A. Keep joint free of mortar. Remove mortar and other debris. - B. Install non-combustible, compressible type joint filler to fill space completely except where sealant is shown on joints in exposed finish work. - C. Where joints are on exposed faces, provide depth for backer rod and sealant as specified in Section 07 92 00, JOINT SEALANTS, unless shown otherwise. ## 3.8 ISOLATION SEAL - A. Where full height walls or partitions lie parallel or perpendicular to and under structural beams or shelf angles, provide a separation between walls or partitions and bottom of beams or shelf angles not less than the masonry joint thickness unless shown otherwise. - B. Insert in the separation, a continuous full width strip of non-combustible type compressible joint filler. - C. Where exposed in finish work, cut back filler material in the joint enough to allow for the joint to be filled with sealant material specified in Section 07 92 00, JOINT SEALANTS. ## 3.9 BRICKWORK - A. Lay clay brick in accordance with BIA Technical Note 11 series. - B. Laying: - 1. Lay brick in running bond with course of masonry bonded at corners unless shown otherwise. Match bond of existing building on alterations and additions. - 2.
Maintain bond pattern throughout. - 3. Do not use brick smaller than half-brick at any angle, corner, break or jamb. - 4. Where length of cut brick is greater than one half but less than a whole brick, maintain the vertical joint location of such units. - 5. Lay exposed brickwork joints symmetrical about center lines of openings. - 6. Do not structural bond multi wythe brick walls unless shown. - 7. Before starting work, lay facing brick on foundation wall and adjust bond to openings, angles, and corners. - 8. Lay brick for sills with wash and drip. - 9. Build solid brickwork as required for anchorage of items. - C. Joints: - 1. Exterior and interior joint widths: Lay for three equal joints in 200 mm (eight inches) vertically, unless shown otherwise. - 2. Rake joints for pointing with colored mortar when colored mortar is not full depth. ## 3. Arches: - a. Flat arches (jack arches) lay with camber of 1 in 200 (1/16 inch per foot) of span. - b. Face radial arches with radial brick with center line of joints on radial lines. - c. Form Radial joints of equal width. - d. Bond arches into backing with metal ties in every other joint. ## D. Weep Holes: - 1. Install weep holes at 600 mm (24 inches) on center in bottom of vertical joints of exterior masonry veneer or cavity wall facing over foundations, bond beams, and other water stops in the wall. - 2. Form weep holes using wicks made of mineral fiber insulation strips turned up 200 mm (8 inches) in cavity. Anchor top of strip to backup to securely hold in place. - 3. Install sand or pea gravel in cavity approximately 75 mm (3 inches) high between weep holes. ## E. Solid Exterior Walls: - 1. Build with 100 mm (4 inches) of nominal thick facing brick, backed up with 100 mm (4 inches) nominal thick face brick. - Construct solid brick jambs not less than 20 mm (.8 inches) wide at exterior wall openings and at recesses, except where exposed concrete unit backup is shown. - 3. Do not use full bonding headers. ## 4. Parging: - a. For solid masonry walls, lay backup to height of six brick courses, parge backup with 13 mm (1/2 inch) of mortar troweled smooth; then lay exterior wythe to height of backup. - b. Make parging continuous over backup, and extend 150 mm (six inches) onto adjacent concrete or masonry. - c. Parge, with mortar, the ends and backs for recesses in exterior walls to a thickness of 13 mm (1/2 inch). - d. Parge with mortar to true even surface the inside surface of exterior walls to receive insulation. ## F. Cavity Type Exterior Walls: - 1. Keep air space clean of mortar accumulations and debris. - a. Clean cavity by use of hard rubber, wood or metal channel strips having soft material on sides contacting wythes. - b. Lift strips with wires before placing next courses of horizontal joint reinforcement or individual ties or adjustable cavity wall ties. - 2. For each lift lay two courses of concrete masonry units, followed by six courses of brick facing. - 3. Lay the interior wythe of the masonry wall full height where dampproofing is required on cavity face. Coordinate to install dampproofing prior to laying outer wythe. - 4. Insulated Cavity Type Exterior Walls: - a. Install the insulation against the cavity face of inner masonry wythe. - b. Place insulation between rows of ties or joint reinforcing or bond to masonry surface with a bonding agent as recommended by the manufacturer of the insulation. - c. Lay the outer masonry wythe up with an air space between insulation and masonry units. - 5. Veneer Framed Walls: - a. Build with 100 mm (4 inches) of face brick over sheathed stud wall with air space. - b. Keep air space clean of mortar accumulations and debris. # 3.10 CONCRETE MASONRY AND STRUCTURAL CLAY TILE UNITS - A. Kind and Users: Match all existing properties. - Provide special concrete masonry shapes as required, including lintel and bond beam units, sash units, and corner units. Use solid concrete masonry units, where full units cannot be used, or where needed for anchorage of accessories. - Provide solid load-bearing concrete masonry units or grout the cell of hollow units at jambs of openings in walls, where structural members impose loads directly on concrete masonry, and where shown. - 3. Provide rounded corner (bullnose) shapes at opening jambs in exposed work and at exterior corners. - 4. Do not use brick jambs in exposed finish work. - 5. Use concrete building brick only as filler in backup material where not exposed. - 6. Masonry assemblies shall meet the required fire resistance in fire rated partitions of type and construction that will provide fire rating as shown. - 7. Structural Clay Tile Units (Option): - a. Structural clay tile units load-bearing or non-load bearing as required, may be used in lieu of concrete masonry units, only, but not as an exposed surface, foundation walls or where otherwise noted. - b. Set units according to applicable requirements specified for concrete masonry units. - c. Use brick or load-bearing structural clay tile units, with cores set vertically, and filled with grout where structural members impose concentrated load directly on structural clay tile masonry. - 8. Where lead lined concrete masonry unit partitions terminate below the underside of overhead floor or roof deck, fill the remaining open space between the top of the partition and the underside of the overhead floor or roof deck, with standard concrete masonry units of same thickness as the lead lined units. #### B. Laving: - 1. Lay concrete masonry units with 10 mm (3/8 inch) joints, with a bond overlap of not less than 1/4 of the unit length, except where stack bond is required. - 2. Do not wet concrete masonry units before laying. - 3. Bond external corners of partitions by overlapping alternate courses. - 4. Lay first course in a full mortar bed. - 5. Set anchorage items as work progress. - 6. Where ends of anchors, bolts, and other embedded items, project into voids of units, completely fill such voids with mortar or grout. - 7. Provide a 6 mm (1/4 inch) open joint for caulking between existing construction, exterior walls, concrete work, and abutting masonry partitions. - 8. Lay concrete masonry units with full face shell mortar beds and fill head joint beds for depth equivalent to face shell thickness. - 9. Lay concrete masonry units so that cores of units, that are to be filled with grout, are vertically continuous with joints of cross - webs of such cores completely filled with mortar. Unobstructed core openings not less than 50 mm (2 inches) by 75 mm (3 inches). - 10. Do not wedge the masonry against the steel reinforcing. Minimum 13 mm (1/2 inch) clear distance between reinforcing and masonry units. - 11. Install deformed reinforcing bars of sizes shown. - 12. Steel reinforcement, at time of placement, free of loose flaky rust, mud, oil, or other coatings that will destroy or reduce bond. - 13. Steel reinforcement in place before grouting. - 14. Minimum clear distance between parallel bars: One bar diameter. - 15. Hold vertical steel reinforcement in place by centering clips, caging devices, tie wire, or other approved methods, vertically at spacings noted. - 16. Support vertical bars near each end and at intermediate intervals not exceeding 192 bar diameters. - 17. Reinforcement shall be fully encased by grout or concrete. - 18. Splice reinforcement or attach reinforcement to dowels by placing in contact and secured or by placing the reinforcement within 1/5 of the required bar splice length. - 19. Stagger splices in adjacent horizontal reinforcing bars. Lap reinforcing bars at splices a minimum of 40 bar diameters. - 20. Grout cells of concrete masonry units, containing the reinforcing bars, solid as specified under grouting. - 21. Cavity and joint horizontal reinforcement may be placed as the masonry work progresses. - 22. Rake joints 6 to 10 mm (1/4 to 3/8 inch) deep for pointing with colored mortar when colored mortar is not full depth. ## C. Waterproofing Parging: - 1. Parge earth side of concrete masonry unit basement walls with mortar applied in two coats, each coat 6 mm (1/4 inch) thick. - 2. Clean wall surfaces to receive parging of dirt, oil, or grease, and moisten before application of first coat. - 3. Roughen first coat when partially set, permit to hardened for 24 hours, and moisten before application of second coat. - 4. Keep second coat damp for at least 48 hours. - 5. Thicken parging and round to form a cove at the junction of outside wall face and footing. # 3.11 GLAZED STRUCTURAL FACING TILE (GSFT) A. Lay facing tile in running bond unless shown otherwise. Match existing adjacent bond and joints in alteration work. ## B. Laying: - 1. Set facing tile units in full bed of mortar with ends buttered, and units shoved into place. Fill joints with mortar, and rake out 9 mm (3/8 inch) deep for pointing. - 2. Use clean units when set. - 3. Perform cutting and grinding of units by power-driven cutting saws and grinders. - 4. Cut or drill units to accommodate electrical outlets, plumbing fixtures, grab-bars, and equipment. - 5. Cove Base Units: - a. Set base flush with finish floor. - b. Form base course of two-face partitions of two units to required thickness. - 6. Lay out partitions enclosing pipes or conduits with thickness to provide 50 mm (two inch) minimum coverage of pipes or conduits. ## 7. Joints: - a. Nominally 6 mm (1/4 inch) width except match existing in alteration work. - b. Maximum variations in joint width 2 mm (1/16 inch). - c. Reinforce Two-Face partitions of 100 mm (4 inch nominal) thickness with continuous joint reinforcement, or wire mesh ties in joints at top of base, at top of GSFT, and at three-course intervals between. ## 3.12 POINTING - A. Fill joints with pointing mortar using rubber float trowel to rub mortar solidly into raked joints. - B. Wipe off excess mortar from joints of glazed masonry units with dry cloth. - C. Finish exposed joints in finish work with a jointing tool to provide a smooth
concave joint unless specified otherwise. - D. At joints with existing work match existing joint. ## 3.13 GROUTING - A. Preparation: - 1. Clean grout space of mortar droppings before placing grout. - 2. Close cleanouts. - 3. Install vertical solid masonry dams across grout space for full height of wall at intervals of not more than 9000 mm (30 feet). Do not bond dam units into wythes as masonry headers. - 4. Verify reinforcing bars are in cells of units or between wythes as shown. ## B. Placing: - 1. Place grout by hand bucket, concrete hopper, or grout pump. - 2. Consolidate each lift of grout after free water has disappeared but before plasticity is lost. - 3. Do not slush with mortar or use mortar with grout. - 4. Interruptions: - a. When grouting must be stopped for more than an hour, top off grout 40 mm (1-1/2 inch) below top of last masonry course. - b. Grout from dam to dam on high lift method. - c. A longitudinal run of masonry may be stopped off only by raking back one-half a masonry unit length in each course and stopping grout 100 mm (4 inches) back of rake on low lift method. #### C. Puddling Method: - 1. Double wythe masonry constructed grouted in lifts not to exceed 300 mm (12 inches) or less than 50 mm (2 inches) wide. - 2. Consolidate by puddling with a grout stick during and immediately after placing. - 3. Grout the cores of concrete masonry units containing the reinforcing bars solid as the masonry work progresses. ## D. Low Lift Method: - 1. Construct masonry to a height of 1.5 m (5 ft) maximum before grouting. - Grout in one continuous operation and consolidate grout by mechanical vibration and reconsolidate after initial water loss and settlement has occurred. ## E. High Lift Method: - Do not pour grout until masonry wall has properly cured a minimum of 4 hours. - 2. Place grout in lifts not exceeding 1.5 m (5 ft). #### 3. Exception: Where the following conditions are met, place grout in lifts not exceeding 3.86 m (12.67 ft). a. The masonry has cured for at least 4 hours. - b. The grout slump is maintained between 254 and 279 mm (10 and 11 in). - c. No intermediate reinforced bond beams are placed between the top and the bottom of the pour height. - 4. When vibrating succeeding lifts, extend vibrator 300 to 450 mm (12 to 18 inches) into the preceding lift to close any shrinkage cracks or separation from the masonry units. #### 3.14 PLACING REINFORCEMENT - A. General: Clean reinforcement of loose rust, mill scale, earth, ice or other materials which will reduce bond to mortar or grout. Do not use reinforcement bars with kinks or bends not shown on the Contract Drawings or final shop drawings, or bars with reduced cross-section due to excessive rusting or other causes. - B. Position reinforcement accurately at the spacing indicated. Support and secure vertical bars against displacement. Horizontal reinforcement may be placed as the masonry work progresses. Where vertical bars are shown in close proximity, provide a clear distance between bars of not less than the nominal bar diameter or 25 mm (1 inch), whichever is greater. - C. For columns, piers and pilasters, provide a clear distance between vertical bars as indicated, but not less than 1 1/2 times the nominal bar diameter or 38 mm (1-1/2 inches), whichever is greater. Provide lateral ties as indicated. - D. Splice reinforcement bars where shown; do not splice at other places unless accepted by the Resident Engineer. Provide lapped splices, unless otherwise indicated. In splicing vertical bars or attaching to dowels, lap ends, place in contact and wire tie. - E. Provide not less than minimum lap as indicated on shop drawings, or if not indicated, as required by governing code. - F. Weld splices where indicated. Comply with the requirements of AWS D1.4 for welding materials and procedures. - G. Embed metal ties in mortar joints as work progresses, with a minimum mortar cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations. - H. Embed prefabricated horizontal joint reinforcement as the work progresses, with a minimum cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations. Lap joint reinforcement not less than 150 mm (6 inches) at ends. Use prefabricated "L" and "T" sections to provide continuity at corners and intersections. Cut and bend joint reinforcement as recommended by manufacturer for continuity at returns, offsets, column fireproofing, pipe enclosures and other special conditions. - I. Anchoring: Anchor reinforced masonry work to supporting structure as indicated. - J. Anchor reinforced masonry walls to non-reinforced masonry where they intersect. #### 3.15 INSTALLATION OF REINFORCED BRICK MASONRY - A. Mortar Jointing and Bedding: match existing. - 1. Pattern Bond: Lay exterior wythes in the pattern bond shown, or if not shown, lay in 1/2 running bond with vertical joints in each course centered on units in courses above and below. Lay inner wythes (if any) with all units in a wythe bonded by lapping not less than 50 mm (2 inches). Bond and interlock each course of each wythe at corners and intersections. Do not use units with less than 100 mm (4 inch) nominal horizontal face dimension at corners or jambs. - 2. Lay exterior wythes with bed (horizontal) and head (vertical) joints between units completely filled with mortar. Top of bed joint mortar may be sloped toward center of walls. Butter ends of units with sufficient mortar to completely fill head joints and shove into place. Do not furrow bed joints or slush head joints. Remove any mortar fins which protrude into grout space. - 3. Maintain joint widths shown for head and bed joints, except for minor variations required to maintain pattern bond. If not shown, lay with 10 mm (3/8 inch) head and bed joints - 4. Maintain joint widths .shown for head and bed joints, but adjust thickness of bed joints, if required, to allow for not less than 6 mm (1/4 inch) thickness of mortar between reinforcement and masonry units, except 6 mm (1/4 inch) bars (if any) may be laid in 13 mm (1/2 inch) thick bed joints and 4.9 mm diameter (6 gage) or smaller wire reinforcing (if any) may be laid in 10 mm (3/8 inch) thick bed joints. - B. Two-Wythe Wall Construction: Lay both wythes as previously specified for exterior wythes. Maintain grout space (collar or continuous vertical joint between wythes) of width indicated, but adjust, if required, to provide grout space not less than 13 mm (1/2 inch) wider than the sum of the vertical and horizontal (if any) reinforcement bars shown to be placed in grout space. Do not parge or fill grout space with mortar. - C. Multi-Wythe Wall Construction: Where walls of 3 or more wythes are indicated, lay exterior wythes as previously specified. Maintain space between wythes as required to allow for laying of the number of wythes of the unit width shown with minimum grout space between wythes. Allow for not less than 19 mm (3/4 inch) of grout between wythes if non-reinforced; if reinforced, allow for a grout space not less than 13 mm (1/2 inch) wider than the sum of the vertical and horizontal (if any) reinforcement bars indicated to be placed in grout space. Place or float interior wythe units in grout poured between exterior wythes as the work progresses. Position units to allow not less than 19 mm (3/4 inch) grout between ends and sides of adjacent units. - D. Limit extent of masonry construction to sections which do not exceed the maximum pour requirements specified hereafter. Provide temporary dams or barriers to control horizontal flow of grout at ends of wall sections. Build dams full height of grout pour. If masonry units are used, do not bond into permanent masonry wythes. Remove temporary dams after completion of grout pour. #### E. Low-Lift Grouting: - 1. Use Low-Lift grouting technique with "Fine Grout" per ASTM C476 for the following: - a. Two-wythe walls with grout space of 50 mm (2 inch) or less in width. - b. Multi-wythe walls. - c. Columns, piers or pilasters where masonry units are shown in core areas enclosed by exterior masonry units. - 2. At Contractor's option, low-lift grouting technique may be used for reinforced masonry construction with grout spaces wider than 50 mm (2 inches), except use "Coarse Grout" mix per ASTM C476 and place in lifts not to exceed 200 mm (8 inches) in height. - 3. Construct low-lift masonry by placing reinforcement, laying masonry units and pouring grout as the work progresses. - 4. Place vertical reinforcement bars and supports prior to laying of masonry units. Extend above elevation of maximum pour height as required to allow for splicing. Horizontal reinforcement bars may be placed progressively with laying of masonry units. - 5. Limit grout pours as required to prevent displacement of masonry by grout pressures (blowout), but do not exceed 1220 mm (4 feet) pour height. - 6. Lay masonry units prior to each grout pour, but do not construct more than 300 mm (12 inches) above maximum grout pour height in one exterior wythe and 100 mm (4 inches) above in other exterior wythe. Provide metal wall ties if required to prevent blowouts. - 7. Pour grout using container with spout and consolidate immediately by rodding or puddling; do not use trowels. Place grout continuously; do not interrupt pouring of grout for more than one hour. If poured in lifts, place from center-to-center of masonry courses. Terminate pour 38 mm (1 1/2 inches) below top of highest course in pour. ## F. High-Lift Grouting: - 1. High-Lift grouting technique may be used for the following masonry construction: - a. Two-wythe walls with grout spaces of 60 mm (2 1/2 inches) or greater width. - b. Columns, piers, or pilasters when no unit masonry fill is shown to be placed in reinforced grout space. - 2. Place reinforcement and support in proper position, prior to laying of masonry units, except if shown to be placed in mortar joints, place as masonry units are laid. Place horizontal
bars in grout spaces on same side of vertical bars. - 3. Construct high-lift masonry by laying masonry to full height and width prior to placing grout. Provide cleanout holes in first course of masonry, and use high-pressure water jet stream to remove excess mortar from grout spaces, reinforcement bars and top surface of structural members which support wall. Clean grout spaces daily during construction of masonry. - 4. Walls: Omit every other masonry unit in first course of one wythe to provide cleanout holes. Tie wythes together with metal ties as shown or as required by code, but provide not less than 3.8 mm diameter (9 gage) wire ties spaced not more than 600 mm (24 inches) o.c. horizontally and 400 mm (16 inches) o.c. vertically for running pattern bond or 300 mm (12 inches) o.c. vertically for stack bond (if any). - 5. Columns, Piers and Pilasters: Omit every other masonry unit around perimeter of member to provide cleanout holes. Provide reinforcing bands placed in bed joints as the masonry work progresses. Provide bands of the size and vertical spacing show, or as required by code, but not less than 3.8 mm diameter (9 gage) wire spaced 300 mm (12 inches) o.c. vertically. - 6. Preparation of Grout Spaces: Prior to grouting, inspect and clean grout spaces. Remove dirt, dust, mortar droppings, loose pieces of masonry and other foreign materials from grout spaces. Clean reinforcement and adjust to proper positioning. Clean top surface of structural members supporting masonry to ensure bond. After cleaning and inspection, close cleanout holes with matching masonry units and brace closures to resist grout pressures. - 7. Do not place grout until entire height of masonry to be grouted has attained sufficient strength to resist grout pressure, but not less than 3 days curing time. Install shores and bracing, if required, before starting grouting operations. - 8. Place grout by pumping into grout spaces, unless alternate methods are acceptable to Resident Engineer. - 9. Use "Coarse Grout" per ASTM C476. Rod or vibrate each grout lift during placing and again after excess moisture has been absorbed, but before plasticity is lost. Do not penetrate or damage grout placed in previous lifts or pours. - 10. Limit grout pours to sections which can be completed in one working day with not more than one hour interruption of pouring operation. Limit pours so as not to exceed the capacity of masonry to resist displacement or loss of mortar bond due to grout pressures. - 11. Do not exceed 3600 mm (12 foot) pour height. - 12. Do not exceed 7600 mm (25 foot) horizontal pour dimension. - 13. Where pour height exceeds 1220 mm (4 feet), place grout in a series of lifts not exceeding 1220 mm (4 feet) height. Place each lift as a continuous pouring operation. Allow not less than 30 minutes, nor more that one hour between lifts of a given pour. - 14. When more than one pour is required to complete a given section of masonry, extend reinforcement beyond masonry as required for splicing. Pour grout to within 38 mm (1-1/2 inches) of top course of first pour. After grouted masonry is cured, remove temporary dams (if any), and lay masonry units and place reinforcement for second pour section before grouting. Repeat sequence, if more pours are required. #### 3.16 INSTALLATION OF REINFORCED CONCRETE UNIT MASONRY - A. Do not wet concrete masonry units (CMU). - B. Lay CMU units with full-face shell mortar beds. Fill vertical head joints (end joints between units) solidly with mortar from face of unit to a distance behind face equal to not less than the thickness of longitudinal face shells. Solidly bed cross-webs of starting courses in mortar. Maintain head and bed joint widths shown, or if not shown, provide 10 mm (3/8 inch) joints. - C. Where solid CMU units are shown, lay with full mortar head and bed joints. #### D. Walls: - 1. Pattern Bond: Lay CMU wall units in 1/2-running bond with vertical joints in each course centered on units in courses above and below, unless otherwise indicated. Bond and interlock each course at corners and intersections. Use special-shaped units where shown, and as required for corners, jambs, sash, control joints, lintels, bond beams and other special conditions. - 2. Maintain vertical continuity of core or cell cavities, which are to be reinforced and grouted, to provide minimum clear dimension indicated and to provide minimum clearance and grout coverage for vertical reinforcement bars. Keep cavities free of mortar. Solidly bed webs in mortar where adjacent to reinforced cores or cells. - 3. Where horizontal reinforced beams (bond beams) are shown, use special units or modify regular units to allow for placement of continuous horizontal reinforcement bars. Place small mesh expanded metal lath or wire screening in mortar joints under bond beam courses over cores or cells of non-reinforced vertical cells, or provide units with solid bottoms. #### E. Columns, Piers and Pilasters: - Use CMU units of the size, shape and number of vertical core spaces shown. If not shown, use units which provide minimum clearances and grout coverage for number and size of vertical reinforcement bars shown. - 2. Provide pattern bond shown, or if not shown, alternate head joints in vertical alignment. - 3. Where bonded pilaster construction is shown, lay wall and pilaster units together to maximum pour height specified. ## F. Grouting: - 1. Use "Fine Grout" per ASTM C476 for filling spaces less than 100 mm (4 inches) in one or both horizontal directions. - 2. Use "Coarse Grout" per ASTM C476 for filling 100 mm (4 inch) spaces or larger in both horizontal directions. - 3. Grouting Technique: At the Contractor's option, use either low-lift or high-lift grouting techniques subject to requirements which follow. ## G. Low-Lift Grouting: - 1. Provide minimum clear dimension of 50 mm (2 inches) and clear area of 5160 mm^2 (8 square inches) in vertical cores to be grouted. - 2. Place vertical reinforcement prior to grouting of CMU. Extend above elevation of maximum pour height as required for splicing. Support in position at vertical intervals not exceeding 192 bar diameters nor 3 m (10 feet). - 3. Lay CMU to maximum pour height. Do not exceed 1.5 m (5 foot) height, or if bond beam occurs below 1.5 m (5 foot) height, stop pour 38 mm (1-1/2 in) below top of bond beam. - 4. Pour grout using chute container with spout or pump hose. Rod or vibrate grout during placing. Place grout continuously; do not interrupt pouring of grout for more than one hour. Terminate grout pours 38 mm (1-1/2 inches) below top course of pour. - 5. Bond Beams: Stop grout in vertical cells 38 mm (1-1/2 inches) below bond beam course. Place horizontal reinforcement in bond beams; lap at corners and intersections as shown. Place grout in bond beam course before filling vertical cores above bond beam. #### H. High-Lift Grouting: - 1. Do not use high-lift grouting technique for grouting of CMU unless minimum cavity dimension and area is 75 mm (3 inches) and 6450 mm^2 (10 square inches), respectively. - 2. Provide cleanout holes in first course at all vertical cells which are to be filled with grout. - 3. Use units with one face shell removed and provide temporary supports for units above, or use header units with concrete brick supports, or cut openings in one face shell. - 4. Construct masonry to full height of maximum grout pour specified, prior to placing grout. - 5. Limit grout lifts to a maximum height of 1.5 m (5 feet) and grout pour to a maximum height of 7.3 m (24 feet), for single wythe hollow concrete masonry walls, unless otherwise indicated. - 6. Place vertical reinforcement before grouting. Place before or after laying masonry units, as required by job conditions. Tie vertical reinforcement to dowels at base of masonry where shown and thread CMU over or around reinforcement. Support vertical reinforcement at intervals not exceeding 192 bar diameters nor 3 m (10 feet). - 7. Where individual bars are placed after laying masonry, place wire loops extending into cells as masonry is laid and loosed before mortar sets. After insertion of reinforcement bar, pull loops and bar to proper position and tie free ends. - 8. Where reinforcement is prefabricated into cage units before placing, fabricate units with vertical reinforcement bars and lateral ties of the size and spacing indicated. - 9. Place horizontal beam reinforcement as the masonry units are laid. - 10. Embed lateral tie reinforcement in mortar joints where indicated. Place as masonry units are laid, at vertical spacing shown. - 11. Where lateral ties are shown in contact with vertical reinforcement bars, embed additional lateral tie reinforcement in mortar joints. Place as shown, or if not shown, provide as required to prevent grout blowout or rupture of CMU face shells, but provide not less than 4.1 mm diameter (8 gage) wire ties spaced 400 mm (16 inches) o.c. for members with 500 mm (20 inches) or less side dimensions, and 200 mm (8 inches) o.c. for members with side dimensions exceeding 500 mm (20 inches). - 12. Preparation of Grout Spaces: Prior to grouting, inspect and clean grout spaces. Remove dust, dirt, mortar droppings, loose pieces of masonry and other foreign materials from grout spaces. Clean reinforcement and adjust to proper position. Clean top surface of structural members supporting masonry to ensure bond. After final cleaning and inspection, close cleanout holes and brace closures to resist grout pressures. - 13. Do not place grout until entire height of masonry to be grouted has attained sufficient strength to resist displacement of masonry units and breaking of mortar bond. Install shores and bracing, if required, before starting grouting operations. - 14. Place grout by pumping into grout spaces unless alternate methods are acceptable to the Resident Engineer. - 15. Limit grout pours to sections which can be completed in one working day with not more than one hour
interruption of pouring operation. Place grout in lifts which do not exceed 1.5 m (5 feet). Allow not less than 30 minutes, nor more than one hour between lifts of a given pour. Mechanically consolidate each grout lift during pouring operation. - 16. Place grout in lintels or beams over openings in one continuous pour. - 17. Where bond beam occurs more than one course below top of pour, fill bond beam course to within 25 mm (1 inch) of vertically reinforced cavities, during construction of masonry. - 18. When more than one pour is required to complete a given section of masonry, extend reinforcement beyond masonry as required for splicing. Pour grout to within 38 mm (1-1/2 inches) of top course of first pour. After grouted masonry is cured, lay masonry units and place reinforcement for second pour section before grouting. Repeat sequence if more pours are required. #### 3.17 CLEANING AND REPAIR ## A. General: - 1. Clean exposed masonry surfaces on completion. - 2. Protect adjoining construction materials and landscaping during cleaning operations. - 3. Cut out defective exposed new joints to depth of approximately 19 mm (3/4 inch) and repoint. - 4. Remove mortar droppings and other foreign substances from wall surfaces. #### B. Brickwork: - 1. First wet surfaces with clean water, then wash down with a solution of soapless detergent. Do not use muriatic acid. - 2. Brush with stiff fiber brushes while washing, and immediately thereafter hose down with clean water. - 3. Free clean surfaces of traces of detergent, foreign streaks, or stains of any nature. ## C. Concrete Masonry Units: 1. Immediately following setting, brush exposed surfaces free of mortar or other foreign matter. - 2. Allow mud to dry before brushing. - D. Glazed Structural Facing Tile or Brick Units: - 1. Clean as recommended by tile or brick manufacturer. Protect light colored mortar joints from discoloration during cleaning. - 2. Prepare schedule of test locations. # 3.18 WATER PENETRATION TESTING - A. Seven days before plastering or painting, in the presence of Resident Engineer, test solid exterior masonry walls for water penetration. - B. Direct water on masonry for a period of one hour at a time when wind velocity is less than five miles per hour. - C. Should moisture appear on inside of walls tested, make additional tests at other areas as directed by Resident Engineer. - D. Correct the areas showing moisture on inside of walls, and repeat test at repaired areas, to insure that moisture penetration has been stopped. - E. Make water test at following locations: - 1. Sixteen places on applicable areas. - 2. At Connecting Corridor make one test for each 45 000 mm (150 lineal feet) (or fraction thereof) of exterior masonry walls. - - - E N D - - - # SECTION 05 50 00 METAL FABRICATIONS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified. - B. Items specified. - 1. Support for Wall and Ceiling Mounted Items: see body lift spec - 2. Frames: - 3. Guards - 4. Loose Lintels - 5. Shelf Angles #### 1.2 RELATED WORK - A. Colors, finishes, and textures: Section 09 06 00, SCHEDULE FOR - B. Prime and finish painting: Section 09 91 00, PAINTING. #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - C. Shop Drawings: - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors. - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions. - 3. Provide templates and rough-in measurements as required. - D. Manufacturer's Certificates: - 1. Anodized finish as specified. - 2. Live load designs as specified. - E. Design Calculations for specified live loads including dead loads. - F. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction. ## 1.4 QUALITY ASSURANCE A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified. - B. Each product type shall be the same and be made by the same manufacturer. - C. Assembled product to the greatest extent possible before delivery to - D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product. #### 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers (ASME): B18.6.1-81 (R1997)Wood Screws B18.2.2-87(R2005) Square and Hex Nuts C. American Society for Testing and Materials (ASTM): A36/A36M-05Structural Steel A47-99(R2004)Malleable Iron Castings A48-03Gray Iron Castings A53-06Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-02Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A167-99(R2004)Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip A269-07Seamless and Welded Austenitic Stainless Steel Tubing for General Service A307-07Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A312/A312M-06Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A391/A391M-01Grade 80 Alloy Steel Chain A653/A653M-07Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the Hot-Dip Process A786/A786M-05Rolled Steel Floor Plate B221-06Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes | | B456-03E | lectrodeposited Coatings of Copper Plus Nickel | |------------------|--|--| | | P | lus Chromium and Nickel Plus Chromium | | | B632-02A | luminum-Alloy Rolled Tread Plate | | | C1107-07P | ackaged Dry, Hydraulic-Cement Grout | | | (| Nonshrink) | | | D3656-04I | nsect Screening and Louver Cloth Woven from | | | V | inyl-Coated Glass Yarns | | | F436-07H | ardened Steel Washers | | | F468-06N | onferrous Bolts, Hex Cap Screws, and Studs for | | | G | eneral Use | | | F593-02S | tainless Steel Bolts, Hex Cap Screws, and | | | S | tuds | | | F1667-05D | riven Fasteners: Nails, Spikes and Staples | | D. | . American Welding Society (AWS): | | | | D1.1-04S | tructural Welding Code Steel | | | D1.2-03S | tructural Welding Code Aluminum | | | D1.3-98S | tructural Welding Code Sheet Steel | | Ε. | E. National Association of Architectural Metal Manufacturers (NAAMM) | | | | AMP521-01P | ipe Railing Manual | | | AMP 500-505-1988M | etal Finishes Manual | | | MBG 531-00M | etal Bar Grating Manual | | | MBG 532-00H | eavy Duty Metal Bar Grating Manual | | F. | Structural Steel Painting | Council (SSPC): | | | SP 1-05N | o. 1, Solvent Cleaning | | | SP 2-05N | o. 2, Hand Tool Cleaning | | | SP 3-05N | o. 3, Power Tool Cleaning | | G. | Federal Specifications (F | ed. Spec): | | | RR-T-650ET | reads, Metallic and Nonmetallic, Nonskid | | ART 2 - PRODUCTS | | | ## PART 2 - PRODUCTS # 2.1 MATERIALS - A. Structural Steel: ASTM A36. - B. Stainless Steel: ASTM A167, Type 302 or 304. - C. Primer Paint: As specified in Section 09 91 00, PAINTING. - D. Modular Channel Units: - 1. Factory fabricated, channel shaped, cold formed sheet steel shapes, complete with fittings bolts and nuts required for assembly. - 2. Form channel with in turned pyramid shaped clamping ridges on each side. - 3. Provide case hardened steel nuts with serrated grooves in the top edges designed to be inserted in the channel at any point and be given a quarter turn so as to engage the channel clamping ridges. Provide each nut with a spring designed to hold the nut in place. - 4. Factory finish channels and parts with oven baked primer when exposed to view. Channels fabricated of ASTM A525, G90 galvanized steel may have primer omitted in concealed locations. Finish screws and nuts with zinc coating. - 5. Fabricate snap-in closure plates to fit and close exposed channel openings of not more than 0.3 mm (0.0125 inch) thick stainless steel. - E. Grout: ASTM C1107, pourable type. #### 2.2 HARDWARE - A. Rough Hardware: - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified. - 2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used. ## B. Fasteners: - 1. Bolts with Nuts: - a. ASME B18.2.2. - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts. - c. ASTM F468 for nonferrous bolts. - d. ASTM F593 for stainless steel. - 2. Screws: ASME B18.6.1. - 3. Washers: ASTM F436, type to suit material and anchorage. - 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work. # 2.3 FABRICATION GENERAL #### A. Material - 1. Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified. - 2. Use material free of defects which could affect the appearance or service ability of the finished product. ## B. Size: 1. Size and thickness of members as shown. 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods. #### C. Connections -
1. Except as otherwise specified, connections may be made by welding, riveting or bolting. - 2. Field riveting will not be approved. - 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value. - 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed. - 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings. - 6. Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved. - 7. Use stainless steel connectors for removable members machine screws or bolts. ## D. Fasteners and Anchors - 1. Use methods for fastening or anchoring metal fabrications to building construction as shown or specified. - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation. - 3. Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work. - 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid. - 5. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts. #### E. Workmanship ## 1. General: - a. Fabricate items to design shown. - b. Furnish members in longest lengths commercially available within the limits shown and specified. - c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane. - d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items. - e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades. - f. Prepare members for the installation and fitting of hardware. - g. Cut openings in gratings and floor plates for the passage of ducts, sumps, pipes, conduits and similar items. Provide reinforcement to support cut edges. - h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury. ## 2. Welding: - a. Weld in accordance with AWS. - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment. - c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces. - d. Finish welded joints to match finish of adjacent surface. ## 3. Joining: - a. Miter or butt members at corners. - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance. ## 4. Anchors: - a. Where metal fabrications are shown to be preset in concrete, weld $32 \times 3 \text{ mm}$ (1-1/4 by 1/8 inch) steel strap anchors, 150 mm (6 inches) long with 25 mm (one inch) hooked end, to back of member at 600 mm (2 feet) on center, unless otherwise shown. - b. Where metal fabrications are shown to be built into masonry use 32×3 mm (1-1/4 by 1/8 inch) steel strap anchors, 250 mm (10 inches) long with 50 mm (2 inch) hooked end, welded to back of member at 600 mm (2 feet) on center, unless otherwise shown. ## 5. Cutting and Fitting: - a. Accurately cut, machine and fit joints, corners, copes, and miters. - b. Fit removable members to be easily removed. - c. Design and construct field connections in the most practical place for appearance and ease of installation. - d. Fit pieces together as required. - e. Fabricate connections for ease of assembly and disassembly without use of special tools. - f. Joints firm when assembled. - g. Conceal joining, fitting and welding on exposed work as far as practical. - h. Do not show rivets and screws prominently on the exposed face. - i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools. #### F. Finish: - 1. Finish exposed surfaces in accordance with NAAMM Metal Finishes Manual. - 2. Aluminum: NAAMM AMP 501. - a. Mill finish, AA-M10, as fabricated, use unless specified otherwise. - b. Clear anodic coating, AA-C22A41, chemically etched medium matte, with Architectural Class 1, 0.7 mils or thicker. - c. Colored anodic coating, AA-C22A42, chemically etched medium matte with Architectural Class 1, 0.7 mils or thicker. - d. Painted: AA-C22R10. - 3. Steel and Iron: NAAMM AMP 504. - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise. - b. Surfaces exposed in the finished work: - 1) Finish smooth rough surfaces and remove projections. - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound. - c. Shop Prime Painting: - 1) Surfaces of Ferrous metal: - a) Items not specified to have other coatings. - b) Galvanized surfaces specified to have prime paint. - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3. - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1. - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING. - 2) Non ferrous metals: Comply with MAAMM-500 series. - 4. Stainless Steel: NAAMM AMP-504 Finish No. 4. #### G. Protection: - Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop. - 2. Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items. #### 2.4 SUPPORTS #### A. General: - 1. Fabricate ASTM A36 structural steel shapes as shown. - 2. Use clip angles or make provisions for welding hangers and braces to overhead construction. - 3. Field connections may be welded or bolted. #### B. For Wall Mounted Items: - 1. For items supported by metal stud partitions. - 2. Steel strip or hat channel minimum of 1.5 mm (0.0598 inch) thick. - 3. Steel strip minimum of 150 mm (6 inches) wide, length extending one stud space beyond end of item supported. - 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud. - Structural steel tube or channel for grab bar at water closets floor to structure above with clip angles or end plates formed for anchors. - 6. Use steel angles for thru wall counters. Drill angle for fasteners at ends and not over 100 mm (4 inches) on center between ends. - C. Supports in Autopsy Room: Verify with manufacturer's specs. #### D. Steel Frames: - 1. Form frame from structural steel angles as shown. Where not shown use $63 \times 63 \times 6$ mm $(2-1/2 \times 2-1/2 \times 1/4 \text{ inch})$ angles for frame openings over 1200 mm (4 feet) long and 50 x 50 x 6 mm (2 ix 2 x 1/4 inch) for frame openings less than 1200 mm (4 feet). - 2. Fabricate intermediate supporting members from steel "T's" or angles; located to support cover section edges. - 3. Where covers are required use steel border bars at frames so that top of cover will be flush with frame and finish floor. - 4. Weld steel strap anchors to frame. Space straps not over 600 mm (24 inches) o.c., not shown otherwise between end anchors. Use 6 x 25 x 200 mm (1/4 x 1 x 8 inches) with 50 mm (2 inch) bent ends strap anchors unless shown otherwise. - 5. Drill and tap frames for screw anchors where plate covers occur. #### 2.5 LOOSE LINTELS - A. Furnish lintels of sizes shown. Where size of lintels is not shown, provide the sizes specified. - B. Fabricate lintels with not less than 150 mm (6 inch) bearing at each end for nonbearing masonry walls, and 200 mm (8 inch) bearing at each end for bearing walls. - C. Provide one angle lintel for each 100 mm (4 inches) of masonry thickness as follows except as otherwise specified or shown. - 1. Openings 750 mm to 1800 mm (2-1/2 feet to 6 feet) 100 x 90 x 8 mm (4 x 3-1/2 x 5/16 inch). - 2. Openings 1800 mm to 3000 mm (6 feet to 10 feet) 150 x 90 x 9 mm (6 x 3-1/2 x 3/8 inch). - D. For 150 mm (6 inch) thick masonry openings 750 mm to 3000 mm (2-1/2 feet to 10 feet) use one angle 150 \times 90 \times 9 mm (6 \times 3-1/2 \times 3/8 inch). - E. Provide bearing plates for lintels where shown. - F. Weld or bolt upstanding legs of double angle lintels together with 19 mm (3/4 inch bolts) spaced at 300 mm (12 inches) on centers. - G. Insert spreaders at bolt points to separate the angles for insertion of metal windows, louver, and other anchorage. - H. Where shown or specified, punch upstanding legs of single lintels to suit size and spacing of anchor bolts. #### PART 3 - EXECUTION #### 3.1 INSTALLATION, GENERAL - A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface. - B. Items set into concrete or masonry. - 1. Provide temporary bracing for such items until concrete or masonry is set. - 2. Place in accordance with setting drawings and instructions. - 3. Build strap anchors, into masonry as work progresses. - C. Field weld in accordance with AWS. - 1. Design and finish as specified for shop welding. - 2. Use continuous weld unless specified otherwise. - D. Install anchoring devices
and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use. - E. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming. - F. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion. - G. Secure escutcheon plate with set screw. #### 3.2 INSTALLATION OF SUPPORTS - A. Anchorage to structure. - 1. Secure angles or channels and clips to overhead structural steel by continuous welding unless bolting is shown. - 2. Secure supports to concrete inserts by bolting or continuous welding as shown. - 3. Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise. - 4. Secure steel plate or hat channels to stude as detailed. - B. Supports for Wall Mounted items: - 1. Locate center of support at anchorage point of supported item. - 2. Locate support at top and bottom of wall hung cabinets. - 3. Locate support at top of floor cabinets and shelving installed against walls. - 4. Locate supports where required for items shown. - C. Support at Ceiling for Body Lift: See Manufacturer's spec. ## 3.3 STEEL COMPONENTS FOR MILLWORK ITEMS Coordinate and deliver to Millwork fabricator for assembly where millwork items are secured to metal fabrications. #### 3.4 CLEAN AND ADJUSTING - A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components. - B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project. - - - E N D - - - ## SECTION 06 20 00 FINISH CARPENTRY AND CUSTOM CASEWORK #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies interior millwork and casework. - 1. Plastic Laminate casework. - 2. Solid surface counter top. - 3. Solid surface window stools. - 4. Resin panel with decorative interlayer. - 5. Fabric-wrapped tack surface. - 6. Hardware. #### 1.2 RELATED WORK - A. Fabricated Metal brackets, bench supports and countertop legs: Section 05 50 00, METAL FABRICATIONS. - B. Framing, furring and blocking: Section 06 10 00, ROUGH CARPENTRY. - C. Wood doors: Section 08 14 00, WOOD DOORS. - D. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES. - E. Electrical light fixtures and duplex outlets: Division 26, ELECTRICAL. ## 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Shop Drawings: - 1. Millwork items Half full size scale for sections and details 1:50 (1/4-inch) for elevations and plans. - 2. Show construction and installation. - C. Samples: Plastic laminate finished plywood or particleboard, 150 mm by 300 mm (six by twelve inches). - D. Certificates: - 1. Indicating fire retardant treatment of materials meet the requirements specified. - 2. Indicating moisture content of materials meet the requirements specified. - E. List of acceptable sealers for fire retardant and preservative treated materials. - F. Manufacturer's literature and data: - 1. Finish hardware - 2. Sinks with fittings - 3. Electrical components #### 1.4 DELIVERY, STORAGE AND HANDLING - A. Protect lumber and millwork from dampness, maintaining moisture content specified both during and after delivery at site. - B. Store finishing lumber and millwork in weathertight well ventilated structures or in space in existing buildings designated by Contracting Officer's Representative (COR). Store at a minimum temperature of 21° C (70° F) for not less than 10 days before installation. - C. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece. #### 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Testing and Materials (ASTM): A36/A36M-05Structural Steel A53-06Pipe, Steel, Black and Hot-Dipped Zinc Coated, Welded and Seamless A167-99 (R2004)Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B26/B26M-05Aluminum-Alloy Sand Castings B221-06Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes E84-07Surface Burning Characteristics of Building Materials C. American Hardboard Association (AHA): A135.4-04Basic Hardboard D. Builders Hardware Manufacturers Association (BHMA): A156.9-03Cabinet Hardware A156.16-02Auxiliary Hardware E. Hardwood Plywood and Veneer Association (HPVA): HP1-04Hardwood and Decorative Plywood F. National Particleboard Association (NPA): A208.1-99Wood Particleboard G. American Society of Mechanical Engineers (ASME): B18.2.1-96(R2005)Square and Hex Bolts and Screws (Inch Series) H. American Wood-Preservers' Association (AWPA): AWPA C1-03All Timber Products - Preservative Treatment by Pressure Processes I. Architectural Woodwork Institute (AWI): AWI-99Architectural Woodwork Quality Standards and Quality Certification Program J. National Electrical Manufacturers Association (NEMA): K. U.S. Department of Commerce, Product Standard (PS): L. Military Specification (Mil. Spec): MIL-L-19140ELumber and Plywood, Fire-Retardant Treated M. Federal Specifications (Fed. Spec.): A-A-1922AShield Expansion A-A-1936Contact Adhesive FF-N-836DNut, Square, Hexagon Cap, Slotted, Castle FF-S-111D(1)Screw, Wood MM-L-736(C)Lumber, Hardwood #### PART 2 - PRODUCTS # 2.1 LUMBER - A. Grading and Marking: - 1. Lumber shall bear the grade mark, stamp, or other identifying marks indicating grades of material. - 2. Such identifying marks on a material shall be in accordance with the rule or standard under which the material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification. - 3. The inspection agency for lumber shall be approved by the Board of Review, American Lumber Standards Committee, to grade species used. ## B. Sizes: 1. Lumber Size references, unless otherwise specified, are nominal sizes, and actual sizes shall be within manufacturing tolerances allowed by the standard under which product is produced. - 2. Millwork, standing and running trim, and rails: Actual size as shown or specified. - C. Hardwood: MM-L-736, species as specified for each item. - D. Softwood: PS-20, exposed to view appearance grades: - 1. Use C select or D select, vertical grain for transparent finish including stain transparent finish. - 2. Use Prime for painted or opaque finish. - E. Use edge grain Wood members exposed to weather. #### 2.2 PLYWOOD - A. Softwood Plywood: - 1. Prod. Std. - 2. Grading and Marking: - a. Each sheet of plywood shall bear the mark of a recognized association or independent inspection agency that maintains continuing control over the quality of the plywood. - b. The mark shall identify the plywood by species group or identification index, and shall show glue type, grade, and compliance with PS1. - 3. Plywood, 13 mm (1/2 inch) and thicker; not less than five ply construction, except 32 mm (1-1/4 inch) thick plywood not less than seven ply. - 4. Plastic Laminate Plywood Cores: - a. Exterior Type, and species group. - b. Veneer Grade: A-C. - 5. Shelving Plywood: - a. Interior Type, any species group. - b. Veneer Grade: A-B or B-C. - 6. Other: As specified for item. - B. Hardwood Plywood: - 1. HPVA: HP.1 - 2. Species of face veneer shall be as shown or as specified in connection with each particular item. - 3. Inside of Building: - a. Use Type II (interior) A grade veneer for transparent finish. - b. Use Type II (interior) Sound Grade veneer for paint finish. - 4. On Outside of Building: - a. Use Type I, (exterior) A Grade veneer for natural or stained and varnish finish. - b. Use Type I, (exterior) Sound Grade veneer for paint finish. - 5. Use plain sliced red oak rotary unless specified otherwise. #### 2.3 PARTICLEBOARD - A. NPA A208.1 - B. Plastic Laminate Particleboard Cores: - 1. Use Type 1, Grade 1-M-3, or Type 2, Grade 2-M-2, unless otherwise specified. - 2. Use Type 2, Grade 2-M-2, exterior bond, for tops with sinks. - C. General Use: Type 1, Grade 1-M-3 or Type 2, Grade 2-M-2. ## 2.4 PLASTIC LAMINATE - A. NEMA LD-3. - B. Exposed decorative surfaces including countertops, both sides of cabinet doors, and for items having plastic laminate finish. General Purpose, Type HGL. - C. Cabinet Interiors including Shelving: Both of following options to comply with NEMA, CLS as a minimum. - 1. Plastic laminate clad plywood or particle board. - 2. Resin impregnated decorative paper thermally fused to particle board. - D. Backing sheet on bottom of plastic laminate covered wood tops: Backer, Type HGP. - E. Post Forming Fabrication, Decorative Surfaces: Post forming, Type HGP. #### 2.5 SOLID SURFACE - A. Solid polymer components: - 1. Cast, nonporous, filled polymer, not coated, laminated or of composite construction with through body colors. - 2. Superficial damage to a depth of 0.010 inch (.25 mm) shall be repairable by sanding and/or polishing. - 3. Thickness: As indicated. - 4. Edge: As indicated. #### 2.6 ADHESIVE - A. For Plastic Laminate: Fed. Spec. A-A-1936. - B. For Interior Millwork: Unextended urea resin,
unextended melamine resin, phenol resin, or resorcinol resin. ## 2.7 STAINLESS STEEL ASTM A167, Type 302 or 304. # 2.8 ALUMINUM CAST ASTM B26 #### 2.9 ALUMINUM EXTRUDED ASTM B221 ## 2.10 HARDWARE #### A. Rough Hardware: - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electric-galvanizing process. Galvanized where specified. - 2. Use galvanized coating on ferrous metal for exterior work unless non-ferrous metals or stainless is used. #### 3. Fasteners: - a. Bolts with Nuts: FF-N-836. - b. Expansion Bolts: A-A-1922A. - c. Screws: Fed. Spec. FF-S-111. #### B. Finish Hardware - 1. Cabinet Hardware: ANSI A156.9. - a. Door/Drawer Pulls: B02011. - b. Drawer Slides: B05051 for drawers over 150 mm (6 inches) deep, B05052 for drawers 75 mm to 150 mm 3 to 6 inches) deep, and B05053 for drawers less than 75 mm (3 inches) deep. - c. Sliding Door Tracks: B07063. - d. Adjustable Shelf Standards: B4061 with shelf rest B04083. - e. Concealed Hinges: B1601, minimum 110 degree opening. - f. Butt Hinges: B01361, for flush doors, B01381 for inset lipped doors, and B01521 for overlay doors. - g. Cabinet Door Catch: B0371 or B03172. - h. Vertical Slotted Shelf Standard: B04103 with shelf brackets B04113, sized for shelf depth. - 2. Cabinet Locks: ANSI A156.11. - a. Drawers and Hinged Door: E07262. - b. Sliding Door: E07162. - 3. Auxiliary Hardware: ANSI A156.16. - a. Shelf Bracket: B04041, japanned or enameled finish. - b. Combination Garment rod and Shelf Support: B04051 japanned or enamel finish. - c. Closet Bar: L03131 chrome finish of required length. - d. Handrail Brackets: L03081 or L03101. - 1) Cast Aluminum, satin polished finish. - 2) Cast Malleable Iron, japanned or enamel finish. - 4. Steel Channel Frame and Leg supports for Counter top. Fabricated under Section 05 50 00, METAL FABRICATIONS. - 5. Pipe Bench Supports: - a. Pipe: ASTM A53. - 6. Fabricated Wall Bench Supports: - a. Steel Angles: ASTM A36 steel with chrome finish, or ASTM A167, stainless steel with countersunk wood screws, holes at 64 mm (2-1/2 inches) on center on horizontal member. - b. Use 38 mm by 38 mm by 5 mm (1-1/2 by 1-1/2 by 3/16 inch) angle thick drilled for screw and bolt holes unless shown otherwise. Drill 6 mm (1/4 inch) holes for anchors on vertical member, not more than 200 mm (8 inches) on center between ends or corners. - c. Stainless steel bars brackets: ASTM A167, fabricated to shapes shown, Number 4 finish. Use 50 mm by 5 mm (2 inch by 3/16 inch) bars unless shown otherwise. Drill for anchors and screws. Drill countersunk wood screw holes at 64 mm (2-1/2 inches) on center on horizontal members and not less than two 13 mm (1/4 inch) hole for anchors on vertical member. - 7. Thru-Wall Counter Brackets: - a. Steel angles drilled for fasteners on 100 mm (4 inches) centers. - b. Baked enamel prime coat finish. - 8. Edge Strips Moldings: - a. Driven type "T" shape with serrated retaining stem; vinyl plastic to match plastic laminate color, stainless steel, or 3 mm (1/8 inch) thick extruded aluminum. - b. Stainless steel or extruded aluminum channels. - c. Stainless steel, number 4 finish; aluminum, mechanical applied medium satin finish, clear anodized 0.1 mm (0.4 mils) thick. - 10. Rubber or Vinyl molding - a. Rubber or vinyl standard stock and in longest lengths practicable. - b. Design for closures at joints with walls and adhesive anchorage. - c. Adhesive as recommended by molding manufacturer. - 11. Primers: Manufacturer's standard primer for steel providing baked enamel finish. - C. Vertical Panel Stand-offs - 1. Materials and Components - a. Material: Anodized aluminum, satin finish. - b. Cap: 1 inch diameter, 3/8 inch height. - c. Screw Connector: 1 1/4 inch length. - d. Barrel: 1 inch diameter, 1 inch height. - e. Mounting Hardware: Wood 1 1/2 inch OA with 9/16 inch machine thread. - 2. Performance Requirements - a. Weight Capacity: 25 pounds, each stand-off. - 3. Design Guide - a. Manufacturer: Doug Mockett & Company, Inc. - i. Multi-purpose Stand-offs, MPB Series. - D. Horizontal Transaction Counter Stand-offs - 1. Materials and Components - a. Material: Anodized aluminum, satin finish. - b. Cap: 1 1/4 inch diameter, 1/2 inch height. - c. Screw Connector: 1 1/4 inch length. - d. Barrel: 1 1/4 inch diameter, varying heights. - i. 3 inch height: work surface to ADA-height transaction counter. - ii. 4 inch height: transition piece, ADA-height transaction counter to standing-height transaction counter (Use in conjunction with 3 inch height barrel where occurs). - iii. 8 inch height: work surface to standing-height transaction counter. - 2. Performance Requirements - a. Weight Capacity: 40 pounds, each stand-off. - 3. Design Guide - a. Manufacturer: Doug Mockett & Company, Inc. - i. Multi-purpose Stand-offs, MPB Series. # 2.11 TACK SURFACE - A. Uni-colored linoleum resilient homogenous tackable surface consisting of linseed oil, granulated cork, rosin binders and dry pigments calendared onto a natural burlap backing. Color to extend through thickness of material. - 1. Manufacturer: Forbo. - 2. Product: Bulletin Board. - 3. Width: 48-inch. - 4. Gauge: 1/4-inch. - B. Mounting: Adhere to 1/4-inch substrate and attach to wall. - 1. Adhesive: Forbo L910 or as approved by manufacturer. #### 2.11 MOISTURE CONTENT - A. Moisture content of lumber and millwork at time of delivery to site. - 1. Interior finish lumber, trim, and millwork 32 mm (1-1/4 inches) or less in nominal thickness: 12 percent on 85 percent of the pieces and 15 percent on the remainder. - 2. Exterior treated or untreated finish lumber and trim 100 mm (4 inches) or less in nominal thickness: 15 percent. - 3. Moisture content of other materials shall be in accordance with the standards under which the products are produced. #### 2.12 FIRE RETARDANT TREATMENT - A. Where wood members and plywood are specified to be fire retardant treated, the treatment shall be in accordance with Mil. Spec. MIL-L19140. - B. Treatment and performance inspection shall be by an independent and qualified testing agency that establishes performance ratings. - C. Each piece of treated material shall bear identification of the testing agency and shall indicate performance in accordance with such rating of flame spread and smoke developed. - D. Treat wood for maximum flame spread of 25 and smoke developed of 25. - E. Fire Resistant Softwood Plywood: - 1. Use Grade A, Exterior, plywood for treatment. - 2. Meet the following requirements when tested in accordance with ASTM ${\tt E84.}$ - a. Flame spread: 0 to 25. - b. Smoke developed: 100 maximum - F. Fire Resistant Hardwood Plywood: - 1. Core: Fire retardant treated softwood plywood. - 2. Hardwood face and back veneers untreated, - 3. Factory seal panel edges, to prevent loss of fire retardant salts. #### 2.13 PRESERVATIVE TREATMENT Wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including wood members used for rough framing of millwork items except heart-wood Redwood and Western Red Cedar shall be preservative treated in accordance with AWPA Standards. B. Use Grade A, exterior plywood for treatment. #### 2.14 ACOUSTICAL PANEL - A. Performance criteria: - 1. NRC 19 mm (3/4 inch) adhesive mounting direct to substrate. - 2. Composite flame spread: ASTM E84, 25 or less. - 3. Smoke developed: ASTM E84, 140 or less. - B. Glass fiber panel covered with fabric. - 1. Glass fiber panel one inch thick minimum, self supporting of density required for minimum NRC. - 2. Fabric covering treated to resist stains and soil, bonded directly to the glass fiber panel face, flat bonded directly to the glass fiber panel face, flat wrinkle-free surface. - C. Adhesive: As recommended by panel manufacturers. #### 2.15 FABRICATION - A. General: - 1. Except as otherwise specified, use AWI Custom Grade for architectural woodwork and interior millwork. - 2. Finish woodwork shall be free from pitch pockets. - 3. Except where special profiles are shown, trim shall be standard stock molding and members of the same species. - 4. Plywood shall be not less than 13 mm (1/2 inch), unless otherwise shown or specified. - 5. Edges of members in contact with concrete or masonry shall have a square corner caulking rebate. - 6. Fabricate members less than 4 m (14 feet) in length from one piece of lumber, back channeled and molded a shown. - 7. Interior trim and items of millwork to be painted may be fabricated from jointed, built-up, or laminated members, unless otherwise shown on drawings or specified. - 8. Plastic Laminate Work: - a. Factory glued to either a plywood or a particle board core, thickness as shown or specified. - b. Cover exposed edges with plastic laminate, except where aluminum, stainless steel, or plastic molded edge strips are shown or specified. Use plastic molded edge strips on 19 mm (3/4-inch) molded thick or thinner core material. - c. Provide plastic backing sheet on underside of countertops, vanity tops, thru-wall counter and sills including back splashes and end splashes of countertops. > d. Use backing sheet on concealed large panel surface when decorative face does not occur. ## B. Mounting Strips, Shelves and Rods: - 1. Cut mounting strips from 25 mm by 100 mm (1 by 4 inches) softwood stock, with exposed edge slightly rounded. - 2. Cut wood shelf from softwood 1 inch stock, of width shown, exposed edge slightly rounded. Option: Use 19 mm (3/4 inch) thick plywood with 19 mm (3/4 inch) softwood edge nosing on exposed edge, slightly rounded. - 3. Plastic laminate covered, 19 mm (3/4 inch) thick plywood or particle board core with edges and ends having plastic molded edge strips. Size, finish and number as shown. - 4. Rod or Closet Bar: L03131. Combination Garment and Shelf Support, intermediate support for closet bar: B04051 for rods over 1800 mm (6 feet) long. ## C. Pegboard: - 1. Perforated hardboard sheet size as shown. - 2.
Spacing strip: 13 mm by 13 mm (1/2 by 1/2 inch); glued to hardboard sheet. - a. Locate at perimeter of sheet edge. - b. Locate material intermediate spacing strips at 800 mm (32 inches) o.c. - 3. Use 19 mm (3/4 inch) one quarter round edge trim to cover exposed edge and finish flush with hardboard surface. Glue to spacing strip and hard board. #### D. Interview Booth: - 1. Fabricate to AWI premium grade construction. - 2. Use softwood for framing, space members not over 600 mm (24 inches) on center. Use softwood for counter concealed members and mounting strip for writing surface. - 3. Use red oak for exposed hardwood trim. - 4. Use red oak veneer plywood for exposed wood finish. - 5. Acoustical panel glued to plywood substrate. - 6. Use decorative plastic laminate writing surface pattern on counter. - 7. Secure writing surfaces to divided panels with screws and to center support with mounting strips screwed to panel and top at underside. ## E. Counter: - 1. Fabrication with plastic laminate over 32 mm (1-1/4 inch) thick core unless shown otherwise. - a. Use decorative laminate for exposed edges of tops 38 mm (1-1/2 inches) wide and on back splash and end splash. Use plastic or metal edges for top edges less than 38 mm (1-1/2 inches) wide. - b. Assemble back splash and end splash to counter top. - c. Use one piece counters for straight runs. - d. Miter corners for field joints with overlapping blocking on underside of joint. #### PART 3 - EXECUTION #### 3.1 ENVIRONMENTAL REQUIREMENTS - A. Maintain work areas and storage areas to a minimum temperature of 21° C (70°F) for not less than 10 days before and during installation of interior millwork. - B. Do not install finish lumber or millwork in any room or space where wet process systems such as concrete, masonry, or plaster work is not complete and dry. #### 3.2 INSTALLATION #### A. General: - Millwork receiving transparent finish shall be primed and backpainted on concealed surfaces. Set no millwork until primed and back-painted. - 2. Secure trim with fine finishing nails, screws, or glue as required. - 3. Set nails for putty stopping. Use washers under bolt heads where no other bearing plate occurs. - 4. Seal cut edges of preservative and fire retardant treated wood materials with a certified acceptable sealer. - 5. Coordinate with plumbing and electrical work for installation of fixtures and service connections in millwork items. - 6. Plumb and level items unless shown otherwise. - 7. Nail finish at each blocking, lookout, or other nailer and intermediate points; toggle or expansion bolt in place where nails are not suitable. # D. Pegboard or Perforated Hardboard: 1. Install board with chromium plated steel round-head toggle bolts or other fasteners capable of supporting board when loaded at 122 kg/m^2 (25 psf) of board. - 2. Install board with spacers to allow hooks and accessories to be inserted and removed. - 3. Install 6 mm (1/4 inch) round trim at perimeter to finish flush with face of board and close space between wall and hardboard. #### E. Shelves: - 1. Install mounting strip at back wall and end wall for shelves in closets where shown secured with toggle bolts at each end and not over 600 mm (24 inch) centers between ends. - a. Nail Shelf to mounting strip at ends and to back wall strip at not over 900 mm (36 inches) on center. - b. Install metal bracket, ANSI A156.16, B04041, not over 1200 mm (4 feet) centers when shelves exceed 1800 mm (6 feet) in length. - c. Install metal bracket, ANSI A156.16, B04051, not over 1200 mm (4 feet) on centers where shelf length exceeds 1800 mm (6 feet) in length with metal rods, clothes hanger bars ANSI A156.16, L03131, of required length, full length of shelf. - 2. Install vertical slotted shelf standards, ANSI A156.9, B04103 to studs with toggle bolts through each fastener opening. Double slotted shelf standards may be used where adjacent shelves terminate. - a. Install brackets ANSI A156.9, B04113, providing supports for shelf not over 900 mm (36 inches) on center and within 13 mm (1/2 inch) of shelf end unless shown otherwise. - b. Install shelves on brackets so front edge is restrained by bracket. #### F. Interview Booths: - 1. Anchor divider panel floor plates to floor with expansion bolts at ends and not over 900 mm (36 inch) centers. - 2. Install both writing surface on mounting strips secured to divider panels and center support with screws if not shop assembled. Field assemble in accordance with shop drawings. - G. Install with butt joints in straight runs and miter at corners. - - - E N D - - - # SECTION 07 84 00 FIRESTOPPING #### PART 1 GENERAL #### 1.1 DESCRIPTION - A. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction. - B. Closure of openings in walls against penetration of gases or smoke in smoke partitions. - C. Perimeter fire-resistive joint systems consisting of floor to wall joints between perimeter edge of fire-resistance rated floor assemblies and exterior curtain walls. #### 1.2 RELATED WORK - A. Expansion and seismic joint firestopping: Section 07 95 13, EXPANSION JOINT COVER ASSEMBLIES. - B. Sealants and application: Section 07 92 00, JOINT SEALANTS. - C. Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS, Section 23 37 00, AIR OUTLETS AND INLETS. ## 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used. - C. List of FM, UL, or WH classification number of systems installed. - D. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use. ## 1.4 DELIVERY AND STORAGE - A. Deliver materials in their original unopened containers with manufacturer's name and product identification. - B. Store in a location providing protection from damage and exposure to the elements. #### 1.5 WARRANTY Firestopping work subject to the terms of the Article "Warranty of Construction", FAR clause 52.246-21, except extend the warranty period to five years. # 1.6 QUALITY ASSURANCE FM, UL, or WH or other approved laboratory tested products will be acceptable. #### 1.7 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM): E84-07Surface Burning Characteristics of Building Materials E814-06Fire Tests of Through-Penetration Fire Stops C. Factory Mutual Engineering and Research Corporation (FM): Annual Issue Approval Guide Building Materials D. Underwriters Laboratories, Inc. (UL): Annual Issue Building Materials Directory Annual Issue Fire Resistance Directory 1479-03Fire Tests of Through-Penetration Firestops E. Warnock Hersey (WH): Annual Issue Certification Listings #### PART 2 - PRODUCTS # 2.1 FIRESTOP SYSTEMS - A. Use either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. - B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 100 mm (4 in) nominal pipe or 0.01 m² (16 sq. in.) in overall cross sectional area. - C. Products requiring heat activation to seal an opening by its intumescence shall exhibit a demonstrated ability to function as designed to maintain the fire barrier. - D. Firestop sealants used for firestopping or smoke sealing shall have following properties: - 1. Contain no flammable or toxic solvents. - 2. Have no dangerous or flammable out gassing during the drying or curing of products. - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure. - 4. When used in exposed areas, shall be capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface. - E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials shall have following properties: - 1. Classified for use with the particular type of penetrating material used. - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal. - 3. Intumescent products which would expand to seal the opening and act as fire, smoke, toxic fumes, and, water sealant. - F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84. - G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814. - H. Materials to be asbestos free. ## 2.2 SMOKE STOPPING IN SMOKE PARTITIONS - A. Use silicone sealant in smoke partitions as specified in Section 07 92 $\,$ 00, JOINT SEALANTS. - B. Use mineral fiber filler and bond breaker behind sealant. - C. Sealants shall have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with E84. - D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface. ## 2.3 PERIMETER FIRE-RESISTIVE JOINT SYSTEMS - A. For joints between edges of fire-resistance-rated floor assemblies and exterior curtain walls, provide systems of type and with ratings indicated below, as determined by NFPA 285 and UL 2079. - 1. UL-Listed, Perimeter Fire-Containment Systems: Integrity ratings equaling or exceeding
fire-resistance ratings of floor or floor/ceiling assembly forming one side of joint. - 2. OPL-Listed, Perimeter Fire-Barrier Systems: F-ratings equaling or exceeding fire-resistance ratings of floor or floor/ceiling assembly forming one side of joint. - B. Tested in accordance with ASTM E2307. #### PART 3 - EXECUTION #### 3.1 EXAMINATION Submit product data and installation instructions, as required by article, submittals, after an on site examination of areas to receive firestopping. #### 3.2 PREPARATION - A. Remove dirt, grease, oil, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials. - B. Remove insulation on insulated pipe for a distance of 150 mm (six inches) on either side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes. #### 3.3 INSTALLATION - A. Do not begin work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved. - B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions. - ${\tt C.}$ Install smoke stopping seals in smoke partitions. - D. All penetrations, new and existing, shall be firestopped at the end of each work day. # 3.4 CLEAN-UP AND ACCEPTANCE OF WORK - A. As work on each floor is completed, remove materials, litter, and debris. - B. Do not move materials and equipment to the next-scheduled work area until completed work is inspected and accepted by the Contracting Officer's Representative (COR). - C. Clean up spills of liquid type materials. - - - E N D - - - # SECTION 07 92 00 JOINT SEALANTS #### PART 1 - GENERAL #### 1.1 DESCRIPTION: Section covers all sealant and caulking materials and their application, wherever required for complete installation of building materials or systems. #### 1.2 RELATED WORK: - A. Firestopping penetrations: Section 07 84 00, FIRESTOPPING. - B. Glazing: Section 08 80 00, GLAZING. - C. Glazed aluminum curtain wall: Section 08 44 13, GLAZED ALUMINUM CURTAIN WALLS. - D. Sound rated gypsum partitions/sound sealants: Section 09 29 00, GYPSUM BOARD. - E. Mechanical Work: Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. # 1.3 QUALITY CONTROL: - A. Installer Qualifications: An experienced installer who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. - B. Source Limitations: Obtain each type of joint sealant through one source from a single manufacturer. - C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period. - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021. - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods. - 3. Test elastomeric joint sealants according to SWRI's Sealant Validation Program for compliance with requirements specified by reference to ASTM C920 for adhesion and cohesion under cyclic movement, adhesion-in peel, and indentation hardness. - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods. - D. Preconstruction Field-Adhesion Testing: Before installing elastomeric sealants, field test their adhesion to joint substrates in accordance with sealant manufacturer's recommendations: - 1. Locate test joints where indicated or, if not indicated, as directed by Contracting Officer. - 2. Conduct field tests for each application indicated below: - a. Each type of elastomeric sealant and joint substrate indicated. - b. Each type of non-elastomeric sealant and joint substrate indicated. - 3. Notify Contracting Officer's Representative (COR) seven days in advance of dates and times when test joints will be erected. - 4. Arrange for tests to take place with joint sealant manufacturer's technical representative present. - E. VOC: Acrylic latex and Silicon sealants shall have less than 50g/l VOC content. - F. Mockups: Before installing joint sealants, apply elastomeric sealants as follows to verify selections made under sample Submittals and to demonstrate aesthetic effects and qualities of materials and execution: - 1. Joints in mockups of assemblies specified in other Sections that are indicated to receive elastomeric joint sealants, which are specified by reference to this section. # 1.4 SUBMITTALS: - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's installation instructions for each product used. - C. Cured samples of exposed sealants for each color where required to match adjacent material. - D. Manufacturer's Literature and Data: - 1. Caulking compound - 2. Primers - 3. Sealing compound, each type, including compatibility when different sealants are in contact with each other. #### 1.5 PROJECT CONDITIONS: - A. Environmental Limitations: - 1. Do not proceed with installation of joint sealants under following conditions: - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 $^{\circ}\text{C}$ (40 $^{\circ}\text{F}$). - b. When joint substrates are wet. #### B. Joint-Width Conditions: - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated. - C. Joint-Substrate Conditions: - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates. #### 1.6 DELIVERY, HANDLING, AND STORAGE: - A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon. - B. Carefully handle and store to prevent inclusion of foreign materials. - C. Do not subject to sustained temperatures exceeding 5° C (40° F) or less than 32° C (90° F). #### 1.7 DEFINITIONS: - A. Definitions of terms in accordance with ASTM C717 and as specified. - B. Backup Rod: A type of sealant backing. - C. Bond Breakers: A type of sealant backing. - D. Filler: A sealant backing used behind a back-up rod. #### 1.8 WARRANTY: - A. Warranty exterior sealing against leaks, adhesion, and cohesive failure, and subject to terms of "Warranty of Construction", FAR clause 52.246-21, except that warranty period shall be extended to two years. - B. General Warranty: Special warranty specified in this Article shall not deprive Government of other rights Government may have under other provisions of Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of Contract Documents. #### 1.9 APPLICABLE PUBLICATIONS: - A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. - B. American Society for Testing and Materials (ASTM): | C509-06Elastomeric Cellular Preformed Gasket and | |---| | Sealing Material. | | C612-04Mineral Fiber Block and Board Thermal | | Insulation. | | C717-07Standard Terminology of Building Seals and | | Sealants. | | C834-05Latex Sealants. | | C919-02Use of Sealants in Acoustical Applications. | | C920-05Elastomeric Joint Sealants. | | C1021-08Laboratories Engaged in Testing of Building | | Sealants. | | C1193-05Standard Guide for Use of Joint Sealants. | | C1330-02 (R2007)Cylindrical Sealant Backing for Use with Cold | | Liquid Applied Sealants. | | D1056-07Specification for Flexible Cellular Materials- | | Sponge or Expanded Rubber. | | E84-08Surface Burning Characteristics of Building | | Materials. | | | C. Sealant, Waterproofing and Restoration Institute (SWRI). The Professionals' Guide # PART 2 - PRODUCTS # 2.1 SEALANTS: - A. S-1: - 1. ASTM C920, polyurethane or polysulfide. - 2. Type M. - 3. Class 25. - 4. Grade NS. - 5. Shore A hardness of 20-40 - B. S-2: - 1. ASTM C920, polyurethane or polysulfide. - 2. Type M. - 3. Class 25. - 4. Grade P. - 5. Shore A hardness of 25-40. - C. S-4: - 1. ASTM C920 polyurethane or polysulfide. - 2. Type S. - 3. Class 25. - 4. Grade NS. - 5. Shore A hardness of 25-40. - D. S-6: - 1. ASTM C920, silicone, neutral cure. - 2. Type S. - 3. Class: Joint movement range of plus 100 percent to minus 50 percent. - 4. Grade NS. - 5. Shore A hardness of 15-20. - 6. Minimum elongation of 1200 percent. - E. S-7: - 1. ASTM C920, silicone, neutral cure. - 2. Type S. - 3. Class 25. - 4. Grade NS. - 5. Shore A hardness of 25-30. - 6. Structural glazing application. - F. S-8: - 1. ASTM C920, silicone, acetoxy cure. - 2. Type S. - 3. Class 25. - 4. Grade NS. - 5. Shore A hardness of 25-30. - 6. Structural glazing application. - G. S-9: - 1. ASTM C920 silicone. - 2. Type S. - 3. Class 25. - 4. Grade NS. - 5. Shore A hardness of 25-30. - 6. Non-yellowing, mildew resistant. # 2.2 CAULKING COMPOUND: - A. C-1: ASTM C834, acrylic latex. - B. C-2: One component acoustical caulking, non drying, non hardening, synthetic rubber. ## 2.3 COLOR: - A. Sealants used with exposed masonry shall match color of mortar joints. - B. Color of sealants for other locations shall be light gray or aluminum, unless specified otherwise. C. Caulking shall be light gray or white, unless specified otherwise. #### 2.4 JOINT SEALANT BACKING: - A. General: Provide sealant backings of material and
type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing. - B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance: - 1. Type C: Closed-cell material with a surface skin. - C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056, nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32° C (minus 26° F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance. - D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable. # 2.5 FILLER: - A. Mineral fiber board: ASTM C612, Class 1. - B. Thickness same as joint width. - C. Depth to fill void completely behind back-up rod. ## 2.6 PRIMER: - A. As recommended by manufacturer of caulking or sealant material. - B. Stain free type. # 2.7 CLEANERS-NON POUROUS SURFACES: Chemical cleaners acceptable to manufacturer of sealants and sealant backing material, free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates. #### PART 3 - EXECUTION # 3.1 INSPECTION: - A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant. - B. Coordinate for repair and resolution of unsound substrate materials. C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer. #### 3.2 PREPARATIONS: - A. Prepare joints in accordance with manufacturer's instructions and SWRI. - B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion. - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include the following: - a. Concrete. - b. Masonry. - c. Unglazed surfaces of ceramic tile. - 3. Remove laitance and form-release agents from concrete. - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. - a. Metal. - b. Glass. - c. Porcelain enamel. - d. Glazed surfaces of ceramic tile. - C. Do not cut or damage joint edges. - D. Apply masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds. - 1. Do not leave gaps between ends of sealant backings. - 2. Do not stretch, twist, puncture, or tear sealant backings. - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials. - E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions. - 1. Apply primer prior to installation of back-up rod or bond breaker tape. - 2. Use brush or other approved means that will reach all parts of joints. - F. Take all necessary steps to prevent three sided adhesion of sealants. # 3.3 BACKING INSTALLATION: - A. Install back-up material, to form joints enclosed on three sides as required for specified depth of sealant. - B. Where deep joints occur, install filler to fill space behind the backup rod and position the rod at proper depth. - C. Cut fillers installed by others to proper depth for installation of back-up rod and sealants. - D. Install back-up rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified. - E. Where space for back-up rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces. - F. Take all necessary steps to prevent three sided adhesion of sealants. #### 3.4 SEALANT DEPTHS AND GEOMETRY: - A. At widths up to 6 mm (1/4 inch), sealant depth equal to width. - B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface. ## 3.5 INSTALLATION: #### A. General: - 1. Apply sealants and caulking only when ambient temperature is between 5° C and 38° C (40° and 100° F). - 2. Do not use polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present. - 3. Do not use sealant type listed by manufacture as not suitable for use in locations specified. - 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions. - 5. Avoid dropping or smearing compound on adjacent surfaces. - 6. Fill joints solidly with compound and finish compound smooth. - 7. Tool joints to concave surface unless shown or specified otherwise. - 8. Finish paving or floor joints flush unless joint is otherwise detailed. - 9. Apply compounds with nozzle size to fit joint width. - 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant. - B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. - C. Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise. - 1. Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction. - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board. - 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing. - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs. - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint. # 3.6 FIELD QUALITY CONTROL: - A. Field-Adhesion Testing: Field-test joint-sealant adhesion to joint substrates as recommended by sealant manufacturer: - 1. Extent of Testing: Test completed elastomeric sealant joints as follows: - a. Perform 10 tests for first 300 m (1000 feet) of joint length for each type of elastomeric sealant and joint substrate. - b. Perform one test for each 300 m (1000 feet) of joint length thereafter or one test per each floor per elevation. - B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log. - C. Inspect tested joints and report on following: - 1. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate. - 2. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria. - 3. Whether sealants filled joint cavities and are free from voids. - 4. Whether sealant dimensions and configurations comply with specified requirements. - D. Record test results in a field adhesion test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions. - E. Repair sealants pulled from test area by applying new sealants following same procedures used to originally seal joints. Ensure that original sealant surfaces are clean and new sealant contacts original sealant. - F. Evaluation of Field-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements, will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements. # 3.7 CLEANING: - A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by the caulking or sealant manufacturer. - B. After filling and finishing joints, remove masking tape. - C. Leave adjacent surfaces in a clean and unstained condition. # 3.8 LOCATIONS: - A. Exterior Building Joints, Horizontal and Vertical: - 1. Metal to Metal: Type S-1, S-2 - 2. Metal to Masonry or Stone: Type S-1 - B. Metal Reglets and Flashings: - 1. Flashings to Wall: Type S-6 - 2. Metal to Metal: Type S-6 - C. Sanitary Joints: - 1. Walls to Plumbing Fixtures: Type S-9 - 2. Counter Tops to Walls: Type S-9 - 3. Pipe Penetrations: Type S-9 - D. High Temperature Joints over 204 degrees C
(400 degrees F): - 1. Exhaust Pipes, Flues, Breech Stacks: Type S-7 or S-8 - E. Interior Caulking: - 1. Typical Narrow Joint 6 mm, (1/4 inch) or less at Walls and Adjacent Components: Types C-1, C-2 and C-3. - 2. Perimeter of Doors, Windows, Access Panels which Adjoin Concrete or Masonry Surfaces: Types C-1, C-2 and C-3. - 3. Joints at Masonry Walls and Columns, Piers, Concrete Walls or Exterior Walls: Types C-1, C-2 and C-3. - 4. Exposed Isolation Joints at Top of Full Height Walls: Types C-1, C-2 and C-3. - 5. Exposed Acoustical Joint at Sound Rated Partitions Type C-2. - 6. Concealed Acoustic Sealant Type S-4, C-1, C-2 and C-3. E N D # SECTION 08 14 00 INTERIOR WOOD DOORS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies interior flush doors. - B. Section includes fire rated doors, sound retardant doors, and smoke doors. #### 1.2 RELATED WORK - A. Metal door frames: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES. - B. Door hardware including hardware location (height): Section 08 71 00, DOOR HARDWARE. - C. Installation of doors and hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, Section 08 14 00, WOOD DOORS, or Section 08 71 00, DOOR HARDWARE. - D. Glazing: Section 08 80 00, GLAZING. - E. Finish: Section 09 06 00, SCHEDULE FOR FINISHES. - F. Metal louvers: Section 08 90 00, LOUVERS AND VENTS. - G. Card readers and biometric devices: Section 28 13 00, ACCESS CONTROL #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Samples: - Veneer sample 200 mm (8 inch) by 275 mm (11 inch) by 6 mm (1/4 inch) showing specified wood species sanded to receive a transparent finish. Factory finish veneer sample where the prefinished option is accepted. - C. Shop Drawings: - 1. Show every door in project and schedule location in building. - 2. Indicate type, grade, finish and size; include detail of pertinent details. - 3. Provide information concerning specific requirements not included in the manufacturer's literature and data submittal. - D. Manufacturer's Literature and Data: - Sound rated doors, including test report indicating STC rating per ASTM E90 from test laboratory. - 2. Labeled fire rated doors showing conformance with NFPA 80. - E. Laboratory Test Reports: - 1. Screw holding capacity test report in accordance with WDMA T.M.10. - 2. Split resistance test report in accordance with WDMA T.M.5. - 3. Cycle/Slam test report in accordance with WDMA T.M.7. - 4. Hinge-Loading test report in accordance with WDMA T.M.8. ## 1.4 WARRANTY - A. Doors are subject to terms of Article titled "Warranty of Construction", FAR clause 52.246-21, except that warranty shall be as follows: - 1. For interior doors, manufacturer's warranty for lifetime of original installation. - 2. Specified STC RATING for sound retardant rated door assembly in place. # 1.5 DELIVERY AND STORAGE - A. Factory seal doors and accessories in minimum of 6 mill polyethylene bags or cardboard packages which shall remain unbroken during delivery and storage. - B. Store in accordance with WDMA I.S.1-A, J-1 Job Site Information. - C. Label package for door opening where used. # 1.6 APPLICABLE PUBLICATIONS Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. | | <u> </u> | |----|---| | В. | Window and Door Manufacturers Association (WDMA): | | | I.S.1-A-04Architectural Wood Flush Doors | | | I.S.4-07AWater-Repellent Preservative Non-Pressure | | | Treatment for Millwork | | | I.S.6A-01Architectural Wood Stile and Rail Doors | | | T.M.5-90Split Resistance Test Method | | | T.M.6-08Adhesive (Glue Bond) Durability Test Method | | | T.M.7-08Cycle-Slam Test Method | | | T.M.8-08Hinge Loading Test Method | | | T.M.10-08Screwholding Test Method | | С. | National Fire Protection Association (NFPA): | | | 80-07Protection of Buildings from Exterior Fire | | | 252-08Fire Tests of Door Assemblies | | D. | ASTM International (ASTM): | | | E90-04Laboratory Measurements of Airborne Sound | | | | Transmission Loss #### PART 2 - PRODUCTS #### 2.1 FLUSH DOORS - A. General: - 1. Meet requirements of WDMA I.S.1-A, Extra Heavy Duty. - 2. Adhesive: Type II - 3. Thickness: 45 mm (1-3/4 inches) unless otherwise shown or specified. - B. Face Veneer: - 1. In accordance with WDMA I.S.1-A. - 2. One species throughout the project unless scheduled or otherwise shown. Species and cut to match adjacent wood doors. Cherry stain to match existing doors in adjacent areas. Verify with COR. - 3. For transparent finishes: Premium Grade. - a. A grade face veneer standard optional. - b. AA grade face veneer - c. Match face veneers for doors for uniform effect of color and grain at joints. - d. Door edges shall be same species as door face veneer except maple may be used for stile face veneer on birch doors. - f. In existing buildings, where doors are required to have transparent finish, use wood species and grade of face veneers to match adjacent existing doors. - 4. Factory sand doors for finishing. - C. Wood for stops, louvers, muntins and moldings of flush doors required to have transparent finish: - 1. Solid Wood of same species as face veneer, except maple may be used on birch doors. - 2. Glazing: - a. On non-labeled doors use applied wood stops nailed tight on room side and attached on opposite side with flathead, countersunk wood screws, spaced approximately 125 mm (5 inches) on centers. - D. Fire rated wood doors: - 1. Fire Performance Rating: - a. "B" label, 1-1/2 hours. - b. "C" label, 3/4 hour. - 2. Labels: - a. Doors shall conform to the requirements of ASTM E2074, or NFPA 252, and, carry an identifying label from a qualified testing and inspection agency for class of door or opening shown designating fire performance rating. - b. Metal labels with raised or incised markings. - 3. Performance Criteria for Stiles of doors utilizing standard mortise leaf hinges: - a. Hinge Loading: WDMA T.M.8. Average of 10 test samples for Extra Heavy Duty doors. - b. Direct screw withdrawal: WDMA T.M.10 for Extra Heavy Duty doors. Average of 10 test samples using a steel, fully threaded #12 wood screw. - c. Cycle Slam: 1,000,000 cycles with no loose hinge screws or other visible signs of failure when tested in accordance with WDMA T.M.7. - 4. Additional Hardware Reinforcement: - a. Provide fire rated doors with hardware reinforcement blocking. - b. Size of lock blocks as required to secure hardware specified. - c. Top, bottom and intermediate rail blocks shall measure not less than 125 mm (five inches) minimum by full core width. - d. Reinforcement blocking in compliance with manufacturer's labeling requirements. - e. Mineral material similar to core is not acceptable. - 5. Other Core Components: Manufacturer's standard as allowed by the labeling requirements. - 6. Provide steel frame approved for use in labeled doors for vision panels. - 7. Provide steel astragal on pair of doors. - E. Smoke Barrier Doors: - 1. For glazed openings use steel frames approved for use in labeled - 2. Provide a steel astragal on one leaf of pairs of doors, including double egress doors. # 2.2 PREFINISH, PREFIT OPTION - A. Flush doors may be factory machined to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame. - B. Factory fitting to conform to specification for shop and field fitting, including factory application of sealer to edge and routings. - C. Flush doors to receive transparent finish (in addition to being prefit) shall be factory finished as follows: - 1. WDMA I.S.1-A Section F-3 specification for System TR-4, Conversion Varnish or System TR-5, Catalyzed Vinyl. - 2. Use stain when required to produce the finish specified in Section 09 06 00 SHEDULE FOR FINISHES. ## 2.3 IDENTIFICATION MARK: - A. On top edge of door. - B. Either a stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, code date of manufacture and quality. - C. Accompanied by either of the following additional requirements: - 1. An identification mark or a separate certification including name of inspection organization. - 2. Identification of standards for door, including glue type. - 3. Identification of veneer and quality certification. #### 2.4 SEALING: Give top and bottom edge of doors two coats of catalyzed polyurethane or water resistant sealer before sealing in shipping containers. #### PART 3 - EXECUTION #### 3.1 DOOR PREPARATION - A. Field, shop or factory preparation: Do not violate the qualified testing and inspection agency label requirements for fire rated doors. - B. Clearances between Doors and Frames and Floors: - 1. Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified. - 2. Maximum clearance at bottom of sound rated doors, light-proofed doors, doors to operating rooms, and doors designated to be fitted with mechanical seal: 10 mm (3/8 inch). - C. Provide cutouts for special details required and specified. - D. Rout doors for hardware using templates and location heights specified in Section, 08 71 00 DOOR HARDWARE. - E. Fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (two inches) of door thickness undercut where shown. - F. Immediately after fitting and cutting of doors for hardware, seal cut edges of doors with two coats of water resistant sealer. - G. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch. - H. Apply a steel astragal on the opposite side of active door on pairs of fire rated doors. - I. Apply a steel astragal to meeting style of active leaf of pair of doors or double egress smoke doors. # 3.2 INSTALLATION OF DOORS APPLICATION OF HARDWARE Install doors and hardware as specified in Section, INSTALLATION OF DOORS AND HARDWARE. #### 3.3 DOOR PROTECTION
- A. As door installation is completed, place polyethylene bag or cardboard shipping container over door and tape in place. - B. Provide protective covering over knobs and handles in addition to covering door. - C. Maintain covering in good condition until removal is approved by Contracting Officer's Representative (COR). - - - E N D - - - # SECTION 08 71 00 DOOR HARDWARE #### PART 1 GENERAL #### 1.1 DESCRIPTION A. Door hardware and related items necessary for complete installation and operation of doors. #### 1.2 RELATED WORK - A. Caulking: Section 07 92 00 JOINT SEALANTS. - B. Application of Hardware: Section 08 14 00, WOOD DOORS; Section 08 11 13, HOLLOW METAL DOORS AND FRAMES; SC. - C. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES. - D. Painting: Section 09 91 00, PAINTING. - E. Card Readers: Section 28 13 11, PHYSICAL ACCESS CONTROL SYSTEMS. Not used. - F. Electrical: Division 26, ELECTRICAL. - G. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM. #### 1.3 GENERAL - A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise. - B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC). - C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements. - D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction. - E. The following items shall be of the same manufacturer, if possible, except as otherwise specified: - 1. Mortise locksets. - 2. Hinges for hollow metal and wood doors. - 3. Surface applied overhead door closers. - 4. Exit devices. ## 1.4 WARRANTY - A. Automatic door operators shall be subject to the terms of FAR Clause 52.24-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below: - 1. Locks, latchsets, and panic hardware: 5 years. - 2. Door closers and continuous hinges: 10 years. #### 1.5 MAINTENANCE MANUALS A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. #### 1.6 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23 plus 2 copies to the VAMC Locksmith (VISN Locksmith if the VAMC does not have a locksmith). - B. Hardware Schedule: Prepare and submit hardware schedule in the following form: | Hardware | Quantity | Size | Reference | Finish | Mfr. | Кеу | UL Mark | ANSI/BHMA | |----------|----------|------|-------------|--------|----------|---------|----------|-------------| | Item | | | Publication | | Name and | Control | (if fire | Finish | | | | | Type No. | | Catalog | Symbols | rated | Designation | | | | | | | No. | | and | | | | | | | | | | listed) | # C. Samples and Manufacturers' Literature: - Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number. - 2. Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified. D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval. #### 1.7 DELIVERY AND MARKING A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to Contracting Officer's Representative (COR) for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in Contracting Officer's Representative (COR)'s office until all other similar items have been installed in project, at which time the Contracting Officer's Representative (COR) will deliver items on file to Contractor for installation in predetermined locations on the project. #### 1.8 PREINSTALLATION MEETING - A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Contracting Officer's Representative (COR) and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following: - 1. Inspection of door hardware. - 2. Job and surface readiness. - 3. Coordination with other work. - 4. Protection of hardware surfaces. - 5. Substrate surface protection. - 6. Installation. - 7. Adjusting. - 8. Repair. - 9. Field quality control. - 10. Cleaning. # 1.9 INSTRUCTIONS A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type. - B. Manufacturers' Catalog Number References: Where manufacturers' products are specified herein, products of other manufacturers which are considered equivalent to those specified may be used. - C. Keying: All cylinders shall be keyed into the existing or new keying system. Provide removable core cylinders that are removable only with a special key or tool without disassembly of lockset. Cylinders shall be 7 pin type 'K' keyway. Keying information shall be furnished at a later date by the Contracting Officer's Representative (COR). # 1.10 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified. - B. American Society for Testing and Materials (ASTM): C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA): A156.805Door ControlsOverhead Stops and Holders A156.1506Release Devices-Closer Holder, Electromagnetic and Electromechanical A156.1608Auxiliary Hardware | | A156.1806Materials and Finishes | |----|--| | | A156.23-04Electromagnetic Locks | | | A156.24-03Delayed Egress Locking Systems | | | A156.25-07Electrified Locking Devices | | | A156.28-07Master Keying Systems | | | A156.29-07Exit Locks and Alarms | | | A156.30-03High Security Cylinders | | | A250.8-03Standard Steel Doors and Frames | | D. | National Fire Protection Association (NFPA): | | | 80-10Fire Doors and Fire Windows | | | 101-09Life Safety Code | | Ε. | Underwriters Laboratories, Inc. (UL): | | | Building Materials Directory (2008) | # PART 2 PRODUCTS #### 2.1 BUTT HINGES - A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified: - 1. Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc. shall be of stainless steel material. - B. Provide quantity and size of hinges per door leaf as follows: - 1. Doors up to 1210 mm (4 feet) high: 2 hinges. - 2. Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum. - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges. - 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm x 114 mm (4-1/2 inches x 4-1/2 inches) hinges. - 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: $127 \text{ mm} \times 114 \text{ mm}$ (5 inches $\times 4-1/2$ inches). - 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches). - 7. Provide heavy-weight hinges where specified. - 8.At doors weighing 330 kg (150 lbs.) or more, furnish 127 mm (5 inch) high hinges. - C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below. #### 2.2 DOOR CLOSING DEVICES A. Closing devices shall be products of one manufacturer for each type specified. #### 2.3 OVERHEAD CLOSERS - A. Conform to ANSI A156.4, Grade 1. - B. Closers shall conform to the following: - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening. - 2. Where specified, closer shall
have hold-open feature. - 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application. - 4. Material of closer body shall be forged or cast. - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron. - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material. - 7. Closers shall have full size metal cover; plastic covers will not be accepted. - 8. Closers shall have adjustable hydraulic backcheck, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve. - 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders. - 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used. - 11. Provide parallel arm closers with heavy duty rigid arm. - 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm. - 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance. - 14. All closers shall have a 1 ½" (38mm) minimum piston diameter. #### 2.4 DOOR STOPS - A. Conform to ANSI A156.16. - B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops. - C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button. - D. Provide floor stops (Type L02141 or L02161 in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width. - E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere. - F. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement. - G. Omit stops where floor mounted door holders are required and where automatic operated doors occur. - H. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging. - I. Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used. - J. Provide overhead surface applied stop Type C02541, ANSI A156.8 on patient toilet doors in bedrooms where toilet door could come in contact with the bedroom door. - K. Provide door stops on doors where combination closer magnetic holders are specified, except where wall stops cannot be used or where floor stops cannot be installed within 4-inches of the wall. - L. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used). # 2.5 OVERHEAD DOOR STOPS AND HOLDERS A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed hold- # 2.6 LOCKS AND LATCHES - A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (13/4 inch) thick or over shall have beveled fronts. Lock cylinders shall have not less than seven pins. Cylinders for all locksets shall be removable core type. Cylinders shall be furnished with construction removable cores and construction master keys. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying device or construction core of allow opening and closing during construction and prior to the installation of final cores. All locks to be provided with unpinned cores to be delivered to the COR. Cores shall be Best Lock cores. - B. In addition to above requirements, locks and latches shall comply with following requirements: - 1. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Provide lever design to match design selected by Architect or to match existing lever design. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool.) - 2. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.5. - 3. Privacy locks in non-mental-health patient rooms shall have an inside thumbturn for privacy and an outside thumbturn for emergency entrance. Single occupancy patient privacy doors shall typically swing out; where such doors cannot swing out, provide center-pivoted doors with rescue hardware (see HW-2B). # 2.7 PUSH-BUTTON COMBINATION LOCKS - NOT USED - A. ANSI/BHMA A156.13, Grade 1. Battery operated pushbutton entry. - B. Construction: Heavy duty mortise lock housing conforming to ANSI/BHMA A156.13, Grade 1. Lever handles and operating components in compliance with the UFAS and the ADA Accessibility Guidelines. Match lever handles of locks and latchsets on adjacent doors. - C. Special Features: Key override to permit a master keyed security system and a pushbutton security code activated passage feature to allow access without using the entry code. ## 2.8 ELECTROMAGNETIC LOCKS - NOT USED A. ANSI/BHMA A156.23; electrically powered, of strength and configuration indicated; with electromagnet attached to frame and armature plate attached to door. Listed under Category E in BHMA's "Certified Product Directory." - 1. Type: Full exterior or full interior, as required by application indicated. - 2. Strength Ranking: 1000 lbf. - 3. Inductive Kickback Peak Voltage: Not more than 53V. - 4. Residual Magnetism: Not more than 4 lbf (18 N) to separate door from magnet. - B. Delayed-Egress Locks: BHMA A156.24. Listed under Category G in BHMA's "Certified Product Directory". - 1. Means of Egress Doors: Lock releases within 15 seconds after applying a force not more than 15 lbf (67 N) for not more than 3 seconds, as required by NFPA 101. - 2. Security Grade: Activated from secure side of door by initiating device. - 3. Movement Grade: Activated by door movement as initiating device. - 4. The lock housing shall not project more than 4-inches (101mm) from #### 2.9 KEYS A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows: | Locks/Keys | Quantity | |------------------------------------|----------------------------| | Cylinder locks | 2 keys each | | Cylinder lock change key
blanks | 100 each different key way | | Masterkeyed sets | 6 keys each | | Grand Master sets | 6 keys each | | Great Grand Master set | 5 keys | | Control key | 2 keys | # 2.10 KEY CABINET - NOT USED - A. ANSI Standard A156.5. Provide key cabinet made of cold rolled, 1.2 mm (0.0478 inch) thick furniture steel electrowelded. Doors shall have "no sag" continuous brasspin piano type hinge and be equipped with chrome plated locking door handles, hook cam and mechanical pushbutton door lock. Key Cabinet and Key Control System shall accommodate all keys for this project plus 25 percent. Provide minimum number of multiple cabinets where a single cabinet of largest size will not accommodate the required number of keys. - B. Key tags shall consist of two sets: Permanent selflocking and loan key snaphook type with tag colors as follows: Red fiber marker of the permanent selflocking type approximately 32 mm (11/4 inch) in diameter engraved with the legend "FILE KEY MUST NOT BE LOANED." Also furnish for each hook a white cloverleaf key marker with snaphooks engraved with the legend "LOAN KEY." - C. The manufacturer of the lock cylinders and locks shall attach a key tag to keys of each lock cylinder and shall mark thereon the respective item number and key change number. Provide each group of keys in a key gathering envelope (supplied by Key Cabinet Manufacturer) in which the lock manufacturer shall include the following information: Item number, key change number and door number. The contractor shall furnish the Key Cabinet Manufacturer the hardware and
keying schedules and change keys. - D. The Key Cabinet Manufacturer shall set up a threeway cross index system, including master keys, listing the keys alphabetically, the hooks numerically and the key changes numerically on different colored index cards. Index cards shall be typewritten and inserted in a durable binder. Attach the keys to the two sets of numbered tags supplied with the cabinet. (The permanent tag and the loan key tag). Instruct the owner in proper use of the system. Install cabinet as directed by the Contracting Officer's Representative (COR). # 2.11 ARMOR PLATES, KICK PLATES. - A. Conform to ANSI Standard A156.6. - B. Provide protective plates as specified below: - 1. Kick plates, mop plates and armor plates of metal, Type J100 series. - 2. Provide kick plates where specified. Kick plates shall be 305 mm (12 inches) high. Both kick plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (11/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick and mop plates to within 6 mm (1/4 inch) of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames. - 3. Kick plates and plates are not required on following door sides: - a. Armor plate side of doors; - b. Exterior side of exterior doors; - c. Closet side of closet doors; - d. Both sides of aluminum entrance doors. - 4. Armor plates for doors are listed under Article "Hardware Sets". Armor plates shall be thickness as noted in the hardware set, 875 mm (35 inches) high and 38 mm (11/2 inches) less than width of doors, except on pairs of metal doors. Provide armor plates beveled on all 4 edges (B4E). Plates on pairs of metal doors shall be 25 mm (1 inch) less than width of each door. Where top of intermediate rail of door is less than 875 mm (35 inches) from door bottom, extend armor plates to within 13 mm (1/2 inch) of top of intermediate rail. On doors equipped with panic devices, extend armor plates to within 13 mm (1/2 inch) of panic bolt push bar. - 5. Where louver or grille occurs in lower portion of doors, substitute stretcher plate and kick plate in place of armor plate. Size of stretcher plate and kick plate shall be 254 mm (10 inches) high. - 6. Provide stainless steel edge guards where so specified at wood doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow. Provide edge guards of bevel and thickness to match wood door. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide full-height edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front. Forward edge guards to wood door manufacturer for factory installation on doors. ## 2.12 EXIT DEVICES - A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging. - B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels. Do not provide surface vertical rod panics at exterior doors. - C. D. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature. - D. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature. - E. Exit devices for fire doors shall comply with Underwriters Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof of compliance. #### 2.13 DOOR PULLS A. Conform to ANSI A156.6. Pull plate 90 mm by 350 mm (31/2 inches by 14 inches), unless otherwise specified. Cut plates of door pulls for cylinders, or turn pieces where required. #### 2.14 PUSH PLATES A. Conform to ANSI A156.6. Metal, Type J302, 200 mm (8 inches) wide by 350 mm (14 inches) high. Provide metal Type J300 plates 100 mm (4 inches wide by 350 mm (14 inches) high) where push plates are specified for doors with stiles less than 200 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required. #### 2.15 COMBINATION PUSH AND PULL PLATES A. Conform to ANSI 156.6. Type J303, stainless steel 3 mm (1/8 inch) thick, 80 mm (31/3 inches) wide by 800 mm (16 inches) high), top and bottom edges shall be rounded. Secure plates to wood doors with 38 mm (11/2 inch) long No. 12 wood screws. Cut plates for turn pieces, and cylinders where required. Pull shall be mounted down. # 2.16 MISCELLANEOUS HARDWARE - A. Cylinders for Various Partitions and Doors: Key cylinders same as entrance doors of area in which partitions and door occur, except as otherwise specified. Provide cylinders to operate locking devices where specified for following partitions and doors: - 1. Folding doors and partitions. - 2. Wicket door (in rollup door assemblies). - 3. Slideup doors. - 4. Swingup doors. - 5. Firerated access doorsEngineer's key set. - 6. Doors from corridor to electromagnetic shielded room. - 7. Day gate on vault door. - B. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, leadlined frames and frames for soundresistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except doubleacting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame. #### 2.17 FINISHES - A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING. - B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified. - C. Miscellaneous Finishes: - 1. Hinges --interior doors: 652 or 630. - 2. Pivots: Match door trim. - 3. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color. - D. Special Finish: Exposed surfaces of hardware for dark bronze anodized aluminum doors shall have oxidized oil rubbed bronze finish (dark bronze) finish on door closers shall closely match doors. - E. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies. # 2.18 BASE METALS A. Apply specified U.S. Standard finishes on different base metals as following: | Finish | Base Metal | |--------|-----------------| | 652 | Steel | | 626 | Brass or bronze | | 630 | Stainless steel | #### PART 3 EXECUTION #### 3.1 HARDWARE HEIGHTS - A. For new buildings locate hardware on doors at heights specified below, with all hand-operated hardware centered within 864 mm (34 inches) to 1200 mm (48 inches), unless otherwise noted: - B. Hardware Heights from Finished Floor: - 1. Exit devices centerline of strike (where applicable) 1024 mm (405/16 inches). - 2. Locksets and latch sets centerline of strike 1024 mm (405/16 inches). - 3. Deadlocks centerline of strike 1219 mm (48 inches). - 4. Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket. - 5. Centerline of door pulls to be 1016 mm (40 inches). - 6. Push plates and pushpull shall be 1270 mm (50 inches) to top of plate. - 7. Pushpull latch to be 1024 mm (405/16 inches) to centerline of strike. - 8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware. #### 3.2 INSTALLATION - A. Closer devices, including those with holdopen features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors. At exterior doors, closers shall be mounted on interior side. Where closers are mounted on doors they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws. - B. Hinge Size Requirements: | Door Thickness | Door Width | Hinge Height | |--|---|-----------------------| | 45 mm (1-3/4 inch) | 900 mm (3 feet) and less | 113 mm (4-1/2 inches) | | 45 mm (1-3/4 inch) | Over 900 mm (3 feet) but not more than 1200 mm (4 feet) | 125 mm (5 inches) | | 35 mm (13/8 inch)
(hollow core wood
doors) | Not over 1200 mm (4 feet) | 113 mm (4-1/2 inches) | - C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions. - D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by Contracting Officer's Representative (COR). Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cutouts
and screw-hole locations on doors and frames. - E. Hinges Required Per Door: | Doors 1500 mm (5 ft) or less in height | 2 butts | |---|---------| | Doors over 1500 mm (5 ft) high and not over 2280 mm | 3 butts | | (7 ft 6 in) high | | | Doors over 2280 mm (7 feet 6 inches) high | 4 butts | | Dutch type doors | 4 butts | | Doors with spring hinges 1370 mm (4 feet 6 inches) high or less | 2 butts | | Doors with spring hinges over 1370 mm (4 feet 6 inches) | 3 butts | - F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal. - G. After locks have been installed; show in presence of Contracting Officer's Representative (COR) that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bidding list. Also a copy of the invoice shall be sent to the Contracting Officer's Representative (COR) for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project. #### 3.3 FINAL INSPECTION A. Installer to provide letter to VA Resident/Contracting Officer's Representative (COR) that upon completion, installer has visited the Project and has accomplished the following: - 1. Re-adjust hardware. - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel. - 3. Identify items that have deteriorated or failed. - 4. Submit written report identifying problems. ## 3.4 DEMONSTRATION A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Contracting Officer's Representative (COR) and VA Locksmith. ## 3.5 HARDWARE SETS A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings. ## HARDWARE SET 1 | | Hinges | QUANTITY & TYPE AS REQUIRED | |---|--------------|--------------------------------------| | 1 | Exit Device | Panic Interior, Exterior VA Standard | | 1 | Key Cylinder | VA Standard | | 1 | Closer | VA Standard | | 1 | Kick Plate | VA Standard | | 1 | O. H. STOP | VA Standard | | 3 | Silencers | VA Standard | | | | | ## HARDWARE SET 2 | | Hinges | QUANTITY & TYPE AS REQUIRED | |---|-------------|-----------------------------| | 1 | Office Lock | VA Standard lever | | 1 | Wall Bumper | VA Standard | | 3 | Silencers | VA Standard | | 1 | Closer | VA Standard | | 1 | Kick Plate | VA Standard | | 1 | O. H. STOP | VA Standard | | | | | Adjust for slow closure, enough time to transport a gurney (Door 103, 104). ## HARDWARE SET 3 Hinges QUANTITY & TYPE AS REQUIRED 1 Storeroom Lock VA Standard lever ## HARDWARE SET 4 Hinges QUANTITY & TYPE AS REQUIRED 1 Storeroom Lock VA Standard lever ## HARDWARE SET 5 Hinges QUANTITY & TYPE AS REQUIRED 1 PRIVACY LOCK VA Standard lever ## HARDWARE SET 6 Hinges QUANTITY & TYPE AS REQUIRED 1 Office Lock VA Standard lever 1 Wall Bumper VA Standard 3 Silencers VA Standard 1 Closer VA Standard 1 Kick Plate VA Standard 1 O. H. STOP VA Standard 1 Latch VA Standard 1 Fire Seals VA Standard E N D ## SECTION 09 06 00 SCHEDULE FOR FINISHES VAMC: Louis A. Johnson VAMC Location: Clarksburg, WV Project No. and Name: VA Project 540-09-102 AUTOPSY TABLE INSTALLATION Date: October 26, 2010 #### PART I - GENERAL #### 1.1 DESCRIPTION A. This section is in reference for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations. #### 1.2 MANUFACTURERS A. Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by Contracting Officer for finish requirements. #### 1.3 SUBMITALS A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES—provide quadruplicate samples for color approval of materials and finishes specified in this section. #### 1.4 APPLICABLE PUBLICATIONS A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only. B. MASTER PAINTING INSTITUTE: (MPI) 2007Architectural Painting Specification Manual - - - E N D - - - ## SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING #### PART 1 GENERAL #### 1.1 DESCRIPTION This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards. ## 1.2 RELATED WORK - A. Load bearing framing: Section 05 40 00, COLD-FORMED METAL FRAMING. - B. Support for wall mounted items: Section 05 50 00, METAL FABRICATIONS. - C. Pull down tabs in steel decking: Section 05 36 00, COMPOSITE METAL DECKING. - D. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS Section 09 29 00, GYPSUM BOARD. ## 1.3 TERMINOLOGY - A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified. - B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walkon floors the underside of the walkon floor is the underside of structure overhead. - C. Thickness of steel specified is the minimum bare (uncoated) steel thickness. ## 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: - 1. Studs, runners and accessories. - 2. Hanger inserts. - 3. Channels (Rolled steel). - 4. Furring channels. - 5. Screws, clips and other fasteners. - C. Shop Drawings: - 1. Typical ceiling suspension system. - 2. Typical metal stud and furring construction system including details around openings and corner details. - 3. Typical shaft wall assembly - 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test. - D. Test Results: Fire rating test designation, each fire rating required for each assembly. ## 1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE In accordance with the requirements of ASTM C754. ## 1.6 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society For Testing And Materials (ASTM) A123-09Zinc (Hot-dip Galvanized) Coatings on Iron and Steel Products A653/A653M-09Steel Sheet, ZincCoated (Galvanized) or Zinc-Iron Alloy Coated (Galvannealed) by the HotDip Process A64109ZincCoated (Galvanized) Carbon Steel Wire C1109Terminology Relating to Gypsum and Related Building Materials and Systems C63507Manufacture, Performance, and Testing of Metal Suspension System for Acoustical Tile and Layin Panel Ceilings Systems for Acoustical Tile and Layin Panels C64508NonStructural Steel Framing Members Receive ScrewAttached Gypsum Panel Products C84103(R2008)Installation of Interior Lathing and Furring C954-07Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness C100207Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs #### PART 2 PRODUCTS #### 2.1 PROTECTIVE COATING Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G-60 minimum, per ASTM 123. ## 2.2 STEEL STUDS AND RUNNERS (TRACK) - A. ASTM C645, modified for thickness specified and sizes as shown. - 1. Use ASTM A525 steel, 0.8 mm (0.0329-inch) thick bare metal (33 mil). - 2. Runners same thickness as studs. - B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24inch) centers. - C. Doubled studs for openings and studs for supporting concrete backerboard. - D. Studs 3600 mm (12 feet) or less in length shall be in one piece. - E. Shaft Wall Framing: - 1. Conform to rated wall construction. - 2. C-H Studs. - 3. E Studs. - 4. J Runners. - 5. Steel Jamb-Strut. ## 2.3 FURRING CHANNELS - A. Rigid furring channels (hat shape): ASTM C645. - B. Resilient furring channels: - 1. Not less than 0.45 mm (0.0179inch) thick bare metal. - 2. Semihat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to. - C. "Z" Furring Channels: - 1. Not less than 0.45 mm (0.0179 inch) thick bare metal, with 32 mm (11/4 inch) and 19 mm (3/4 inch) flanges. - 2. Web furring depth to suit thickness of insulation with slotted perforations. D. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold
rolled. ## 2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES - A. ASTM C754, except as otherwise specified. - B. For fire rated construction: Type and size same as used in fire rating test. - C. Fasteners for steel studs thicker than 0.84 mm (0.033inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened. - D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items. Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application. - E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinccoated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used. - F. Tie Wire and Hanger Wire: - 1. ASTM A641, soft temper, Class 1 coating. - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841. - G. Attachments for Wall Furring: - 1. Manufacturers standard items fabricated from zinccoated (galvanized) steel sheet. - 2. For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396inch) thick galvanized steel with corrugated edges. - H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened. ## 2.5 SUSPENDED CEILING SYSTEM FOR GYPSUM BOARD (OPTION) - A. Conform to ASTM C635, heavy duty, with not less than 35 mm (13/8 inch) wide knurled capped flange face designed for screw attachment of gypsum board. - B. Wall track channel with 35 mm (13/8 inch) wide flange. ## PART 3 EXECUTION #### 3.1 INSTALLATION CRITERIA A. Where fire rated construction is required for walls, partitions, columns, beams and floorceiling assemblies, the construction shall be same as that used in fire rating test. B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply. ## 3.2 INSTALLING STUDS - A. Install studs in accordance with ASTM C754, except as otherwise shown or specified. - B. Space studs not more than 610 mm (24 inches) on center. - C. Cut studs 6 mm to 9 mm (1/4 to 3/8inch) less than floor to underside of structure overhead when extended to underside of structure overhead. - D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead. - E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and insulated exterior wall furring. ## F. Openings: - 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown. - 2. Fasten back to back studs together with 9 mm (3/8inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs. - 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks. ## G. Fastening Studs: - 1. Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner. - 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead. #### H. Chase Wall Partitions: - 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items. - 2. Use studs or runners as cross bracing not less than 63 mm (21/2 inches wide). - I. Form building seismic or expansion joints with double studs back to back spaced 75 mm (three inches) apart plus the width of the seismic or expansion joint. - J. Form control joint, with double studs spaced 13 mm (1/2inch) apart. ## 3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY - A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown. - B. Wall furringStud System: - 1. Framed with 63 mm (21/2 inch) or narrower studs, 600 mm (24 inches) on center. - 2. Brace as specified in ASTM C754 for Wall FurringStud System or brace with sections or runners or studs placed horizontally at not less than three foot vertical intervals on side without finish. - 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing. - C. Direct attachment to masonry or concrete; rigid channels or "Z" channels: - 1. Install rigid (hat section) furring channels at 600 mm (24 inches) on center, horizontally or vertically. - 2. Install "Z" furring channels vertically spaced not more than 600 mm (24 inches) on center. - 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels. - 4. Ends of spliced furring channels shall be nested not less than $200\ \mathrm{mm}\ (8\ \mathrm{inches})$. - 5. Fasten furring channels to walls with poweractuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange. - 6. Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner. - D. Installing Wall FurringBracket System: Space furring channels not more than 400 mm (16 inches) on center. #### 3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wallhung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction. B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs. #### 3.5 INSTALLING SHAFT WALL SYSTEM - A. Conform to UL Design No. U469 for one hour fire rating Shaft wall. - B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports with power driven fasteners at both ends and 600 mm (24 inches) on center. - C. After liner panels have been erected, cut CH studs and E studs, from 9 mm (3/8inch) to not more than 13 mm (1/2inch) less than floortoceiling height. Install CH studs between liner panels with liner panels inserted in the groove. - D. Install fulllength steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels. - E. Suitably frame all openings to maintain structural support for wall: - 1. Provide necessary liner fillers and shims to conform to label frame requirements. - 2. Frame openings cut within a liner panel with E studs around perimeter. - 3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill. ## 3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS - A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits. - 1. Space framing at 400 mm (16-inch) centers for metal lath anchorage. - 2. Space framing at 600 mm (24-inch) centers for gypsum board anchorage. - B. New exposed concrete slabs: - 1. Use metal inserts required for attachment and support of hangers or hanger wires with tied wire loops for embedding in concrete. - 2. Furnish for installation under Division 3, CONCRETE. - 3. Suspended ceilings under concrete rib construction shall have runner channels at right angles to ribs and be supported from ribs with hangers at ends and at 1200 mm (48inch) maximum intervals along channels. Stagger hangers at alternate channels. - C. Concrete slabs on steel decking composite construction: - 1. Use pull down tabs when available. - 2. Use power activated fasteners when direct attachment to structural framing can not be accomplished. - D. Where bar joists or beams are more than 1200 mm (48 inches) apart, provide intermediate hangers so that spacing between supports does not exceed 1200 mm (48 inches). Use clips, bolts, or wire ties for direct attachment to steel framing. - E. Existing concrete construction exposed or concrete on steel decking: - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required. - 2. Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists. - F. Steel decking without concrete topping: - 1. Do not fasten to steel decking 0.76 mm (0.0299inch) or thinner. - 2. Toggle bolt to decking 0.9 mm (0.0359inch) or thicker only where anchorage to steel framing is not possible. - G. Installing suspended ceiling system for gypsum board (ASTM C635 Option): - 1. Install only for ceilings to receive screw attached gypsum board. - 2. Install in accordance with ASTM C636. - a. Install main runners spaced 1200 mm (48 inches) on center. - b. Install 1200 mm (four foot) tees not over 600 mm (24 inches) on center; locate for edge support of gypsum board. - c. Install wall track channel at perimeter. ## 3.7 TOLERANCES - A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8inch) from the layout line. - B. Plumb and align vertical members within 3 mm (1/8inch.) - C. Level or align ceilings within 3 mm (1/8inch.) E N D ## SECTION 09 30 13 CERAMIC/PORCELAIN TILING #### PART 1 GENERAL #### 1.1 DESCRIPTION This section specifies ceramic, porcelain tile, marble thresholds,
terrazzo type divider strips, waterproofing membranes for thin-set applications, crack isolation membranes, tile backer board. ## 1.2 RELATED WORK - A. Sealing of joints where specified: Section 07 92 00, JOINT SEALANTS. - B. Color, texture and pattern of field tile and trim shapes, size of field tile, trim shapes, and color of grout specified: Section 09 06 00, SCHEDULE FOR FINISHES. - C. Metal and resilient edge strips at joints with new resilient flooring, and carpeting: Section 09 65 19, RESILIENT TILE FLOORING Section 09 68 00, CARPETING. ## 1.3 SUBMITTALS A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. ## B. Samples: - 1. Base tile, each type, each color, each size. - 2. Porcelain or ceramic tile, each type, color, patterns and size. - 3. Wall (or wainscot) tile, each color, size and pattern. - 4. Trim shapes, bullnose cap and cove including bullnose cap and base pieces at internal and external corners of vertical surfaces, each type, color, and size. ## C. Product Data: - 1. Ceramic and porcelain tile, marked to show each type, size, and shape required. - 2. Chemical resistant mortar and grout (Epoxy and Furan). - 3. Cementitious backer unit. - 4. Dryset Portland cement mortar and grout. - 5. Divider strip. - 6. Elastomeric membrane and bond coat. - 7. Reinforcing tape. - 8. Leveling compound. - 9. LatexPortland cement mortar and grout. - 10. Commercial Portland cement grout. - 11. Organic adhesive. - 12. Slip resistant tile. - 13. Waterproofing isolation membrane. - 14. Fasteners. #### D. Certification: - 1. Master grade, ANSI A137.1. - 2. Manufacturer's certificates indicating that the following materials comply with specification requirements: - a. Chemical resistant mortar and grout (epoxy and furan). - b. Modified epoxy emulsion. - c. Commercial Portland cement grout. - d. Cementitious backer unit. - e. Dry-set Portland cement mortar and grout. - f. Elastomeric membrane and bond coat. - g. Reinforcing tape. - h. LatexPortland cement mortar and grout. - i. Leveling compound. - j. Organic adhesive. - k. Waterproof isolation membrane. - 1. Factory mounted tile suitability for application in wet area specified under 2.1, A, 3 with list of successful in-service performance locations. ## 1.4 DELIVERY AND STORAGE - A. Deliver materials in containers with labels legible and intact and gradeseals unbroken. - B. Store material to prevent damage or contamination. #### 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only. - B. American National Standards Institute (ANSI): | A10.20-05 | Safety | Requirements | for | Ceramic | Tile, | Terrazzo, | |-----------|---------|--------------|-----|---------|-------|-----------| | | and Mai | rble Works | | | | | A108.1A-05Installation of Ceramic Tile in the Wet-Set Method with Portland Cement Mortar | ∆108 1C-05 | Contractors Option; Installation of Ceramic | |-------------|---| | 11100.10 00 | Tile in the Wet-Set method with Portland Cement | | | Mortar or Installation of Ceramic Tile on a | | | Cured Portland Cement Mortar Setting Bed with | | | | | 7100 4 OF | Dry-Set or Latex-Portland Cement Mortar | | A100.4-03 | Installation of Ceramic Tile with Organic | | | Adhesives or Water Cleanable Tile Setting Epoxy | | -100 5 05 | Adhesives | | A108.5-05 | Installation of Ceramic Tile with Dry-Set | | | Portland Cement Mortar or Latex-Portland Cement | | | Mortar | | A108.6-05 | Installation of Ceramic Tile with Chemical | | | Resistant, Water Cleanable Tile-Setting and | | | Grouting Epoxy | | A108.8-05 | Installation of Ceramic Tile with Chemical | | | Resistant Furan Resin Mortar and Grout | | A108.10-05 | Installation of Grout in Tilework | | A108.11-05 | Interior Installation of Cementitious Backer | | | Units | | A108.13-05 | Installation of Load Bearing, Bonded, | | | Waterproof Membranes for Thin-Set Ceramic Tile | | | and Dimension Stone | | A118.1-05 | Dry-Set Portland Cement Mortar | | A118.3-05 | Chemical Resistant, Water Cleanable Tile- | | | Setting Epoxy and Water Cleanable Tile-Setting | | | and Grouting Epoxy Adhesive | | A118.4-05 | Latex-Portland Cement Mortar | | A118.5-05 | Chemical Resistant Furan Mortars and Grouts for | | | Tile Installation | | A118.6-05 | Standard Cement Grouts for Tile Installation | | A118.9-05 | Cementitious Backer Units | | A118.10-05 | Load Bearing, Bonded, Waterproof Membranes for | | | Thin-Set Ceramic Tile and Dimension Stone | | | Installation | | A136.1-05 | Organic Adhesives for Installation of Ceramic | | | Tile | | A137.1-88 | | | | | | С. | American Society For Te | sting And Materials (ASTM): | | | | |----|---|---|--|--|--| | | A18507Steel Welded Wire Fabric, Plain, for Concrete | | | | | | | | Reinforcing | | | | | | C109/C109M-07 | .Standard Test Method for Compressive Strength | | | | | | | of Hydraulic Cement Mortars (Using 2 inch. or | | | | | | | [50-mm] Cube Specimens) | | | | | | C24190 (R2005) | .Abrasion Resistance of Stone Subjected to Foot | | | | | | | Traffic | | | | | | C348-02 | .Standard Test Method for Flexural Strength of | | | | | | | Hydraulic-Cement Mortars | | | | | | C627-93 (R2007) | .Evaluating Ceramic Floor Tile Installation | | | | | | | Systems Using the Robinson-Type Floor Tester | | | | | | C95407 | .Steel Drill Screws for the Application of | | | | | | | Gypsum Board on Metal Plaster Base to Steel | | | | | | | Studs from 0.033 in (0.84 mm) to 0.112 in (2.84 | | | | | | | mm) in thickness | | | | | | C97905 | .Pigments for Integrally Colored Concrete | | | | | | C100207 | .Steel Self-Piercing Tapping Screws for the | | | | | | | Application of Panel Products | | | | | | C1027-99(R2004) | .Determining "Visible Abrasion Resistance on | | | | | | | Glazed Ceramic Tile" | | | | | | C102807 | .Determining the Static Coefficient of Friction | | | | | | | of Ceramic Tile and Other Like Surfaces by the | | | | | | | Horizontal Dynamometer Pull Meter Method | | | | | | C1127-01 | .Standard Guide for Use of High Solids Content, | | | | | | | Cold Liquid-Applied Elastomeric Waterproofing | | | | | | | Membrane with an Integral Wearing Surface | | | | | | C1178/C1178M-06 | .Standard Specification for Coated Glass Mat | | | | | | | Water-Resistant Gypsum Backing Panel | | | | | | D4397-02 | .Standard Specification for Polyethylene | | | | | | | Sheeting for Construction, Industrial and | | | | | | | Agricultural Applications | | | | | | D5109-99 (R2004) | .Standard Test Methods for Copper-Clad | | | | | | | Thermosetting Laminates for Printed Wiring | | | | | | | Boards | | | | | D. | Marble Institute of Ame | rica (MIA): Design Manual III2007 | | | | | Ε. | Tile Council of America | | | | | | | 2007 | .Handbook for Ceramic Tile Installation | | | | ## PART 2 PRODUCTS ## 2.1 TILE - A. Comply with ANSI A137.1, Standard Grade, except as modified: - 1. Inspection procedures listed under the Appendix of ANSI A137.1. - 2. Abrasion Resistance Classification: - a. Tested in accordance with values listed in Table 1, ASTM C 1027. - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms - c. Class IV, 6000 revolutions for remaining areas. - 3. Slip Resistant Tile for Floors: - a. Coefficient of friction, when tested in accordance with ASTM C1028, required for level of performance: - 1) Not less than 0.7 (wet condition) for bathing areas. - 2) Not less than 0.8 on ramps for wet and dry conditions. - 3) Not less than 0.6, except 0.8 on ramps as stated above, for wet and dry conditions for other areas. - b. Tile Having Abrasive Grains: - 1. Unglazed Ceramic Mosaic Tile: Abrasive grains throughout body of the tile. - 2. Quarry Tile: Abrasive grains uniformly embedded in face at rate of approximately 7.5 percent of surface area. - c. Porcelain Paver Tile: Matte surface finish. - 4. Mosaic tile may be mounted or joined together by a resinous bonding material along tile edges. - 5. Do not use back mounted tiles in showers unless certified by manufacturer as noted in paragraph 1.3.D. - 6. Factory Blending: For tile with color variations, within the ranges selected during sample submittals blend tile in the factory and package so tile units taken from one package show the same range in colors as those taken from other packages and match approved samples. - 7. Factory-Applied Temporary Protective Coating: - a. Protect exposed face surfaces (top surface) of tile against adherence of mortar and grout by pre-coating with a continuous film of petroleum paraffin wax, applied hot. - b. Do not coat unexposed tile surfaces. - c. Pre-wax tiles set or grouted with furan or epoxy or latex modified mortars. - B. Unglazed Ceramic Mosaic Tile: Nominal 6 mm (1/4 inch) thick with cushion edges. - C. Glazed Wall Tile: Cushion edges, glazing, as specified in Section 09 06 00, SCHEDULE FOR FINISHES. - D. Porcelain Paver Tile: Nominal 8 mm (5/16 inch) thick, with cushion edges. Porcelain tile produced by the dust pressed method shall be made of approximately 50% feldspar; the remaining 50% shall be made up of various high-quality light firing ball clays yielding a tile with a water absorption rate of 0.5% or less and a breaking strength of between 390 to 400 pounds. ## F. Trim Shapes: - 1. Conform to applicable requirements of adjoining floor and wall tile. - Use slip resistant trim shapes for horizontal surfaces of showers overflow ledges, recessed steps, shower curbs, drying area curbs, and seats. - 3. Use trim shapes sizes conforming to size of adjoining field wall tile unless detailed or specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES. - 4. Internal and External Corners: - a. Square internal and external corner joints are not acceptable. - b. External
corners including edges: Use bullnose shapes. - c. Internal corners: Use cove shapes. - d. Base to floor internal corners: Use special shapes providing integral cove vertical and horizontal joint. - e. Base to floor external corners: Use special shapes providing bullnose vertical edge with integral cove horizontal joint. Use stop at bottom of openings having bullnose return to wall. - f. Wall top edge internal corners: Use special shapes providing integral cove vertical joint with bullnose top edge. - g. Wall top edge external corners: Use special shapes providing bullnose vertical and horizontal joint edge. - h. For unglazed ceramic mosaic and glazed wall tile installed in Portland cement mortar setting bed, use cove and bullnose shapes as applicable. When ceramic mosaic wall and base tile is required, use C Series cove and bullnose shapes. - i. For unglazed ceramic mosaic and glazed wall tile installed in dryset Portland cement mortar, latexPortland cement mortar, and organic adhesive (thin set methods), use cove and surface bullnose shapes as applicable. j. Provide cove and bullnose shapes where shown, and required to complete tile work. ## 2.2 CEMENTITIOUS BACKER UNITS - A. Use in showers or wet areas. - B. ANSI A118.9. - C. Use Cementitious backer units in maximum available lengths. - D. Backer unit meet or exceed the following additional physical properties: <u>Property</u> <u>Test Method</u> <u>Value</u> Water absorption ASTM C948 Less than 20 percent by weight #### 2.3 JOINT MATERIALS FOR CEMENTITIOUS BACKER UNITS - A. Reinforcing Tape: Vinyl coated woven glass fiber mesh tape, open weave, 50 mm (2 inches) wide. Tape with pressure sensitive adhesive backing will not be permitted. - B. Tape Embedding Material: LatexPortland cement mortar complying with ANSI A118.4. - C. Joint material, including reinforcing tape, and tape embedding material, shall be as specifically recommended by the backer unit manufacturer. ## 2.4 FASTENERS - A. Screws for Cementitious Backer Units. - 1. Standard screws for gypsum board are not acceptable. - 2. Minimum 11 mm (7/16 inch) diameter head, corrosion resistant coated, with washers. - 3. ASTM C954 for steel 1 mm (0.033 inch) thick. - 4. ASTM C1002 for steel framing less than 0.0329 inch thick. - B. Washers: Galvanized steel, 13 mm (1/2 inch) minimum diameter. ## 2.5 GLASS MAT WATER RESISTANT GYPSUM BACKER BOARD Confirm to ASTM C1178/C1178M, Optional System for Cementious Backer Units. ## 2.6 SETTING MATERIALS OR BOND COATS - A. Conform to TCA Handbook for Ceramic Tile Installation. - B. Portland Cement Mortar: ANSI A108.1. - C. LatexPortland Cement Mortar: ANSI A118.4. - 1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A118.4. - 2. Prepackaged Dry-Mortar Mix: Factory-prepared mixture of Portland cement; dry, redispersible, ethylene vinyl acetate additive; and other ingredients to which only water needs to be added at Project site. - D. DrySet Portland Cement Mortar: ANSI A118.1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A118.4. - E. Organic Adhesives: ANSI A136.1, Type 1. - F. ChemicalResistant Bond Coat: - 1. Epoxy Resin Type: ANSI A118.3. - 2. Furan Resin Type: ANSI A118.5. ## 2.7 GROUTING MATERIALS - A. Coloring Pigments: - 1. Pure mineral pigments, limeproof and nonfading, complying with ASTM C979. - 2. Add coloring pigments to grout by the manufacturer. - 3. Job colored grout is not acceptable. - 4. Use is required in Commercial Portland Cement Grout, DrySet Grout, and LatexPortland Cement Grout. - B. White Portland Cement Grout: - 1. ANSI A118.6. - 2. Use one part white Portland cement to one part white sand passing a number 30 screen. - 3. Color additive not permitted. - C. Commercial Portland Cement Grout: ANSI Al18.6 color as specified. - D. DrySet Grout: ANSI A118.6 color as specified. - E. LatexPortland Cement Grout: ANSI Al18.6 color as specified. - 1. Unsanded grout mixture for joints 3.2 mm (1/8 inch) and narrower. - 2. Sanded grout mixture for joints 3.2 mm (1/8 inch) and wider. - F. ChemicalResistant Grout: - 1. Epoxy grout, ANSI A118.3. - 2. Furan grout, ANSI A118.5. #### 2.8 PATCHING AND LEVELING COMPOUND A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable. - B. Shall have minimum following physical properties: - 1. Compressive strength 25 MPa (3500 psig) per ASTM C109/C109M. - 2. Flexural strength 7 MPa (1000 psig) per ASTM C348 (28 day value). - 3. Tensile strength 600 psi per ANSI 118.7. - 4. Density 1.9. - C. Capable of being applied in layers up to 38 mm (1-1/2 inches) thick without fillers and up to 100 mm (four inches) thick with fillers, being brought to a feather edge, and being trowelled to a smooth finish. - D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition. - E. Ready for use in 48 hours after application. #### 2.9 MARBLE - A. Soundness Classification in accordance with MIA Design Manual III Groups. - B. Thresholds: - 1. Group A, Minimum abrasive hardness (Ha) of 10.0 per ASTM C241. - 2. Honed finish on exposed faces. - 3. Thickness and contour as shown. - 4. Fabricate from one piece without holes, cracks, or open seams; full depth of wall or frame opening by full width of wall or frame opening; 19 mm (3/4-inch) minimum thickness and 6 mm (1/4-inch) minimum thickness at beveled edge. - 5. Set not more than 13 mm (1/2-inch) above adjoining finished floor surfaces, with transition edges beveled on a slope of no greater than 1:2. On existing floor slabs provide 13 mm (1/2-inch) above ceramic tile surface with bevel edge joint top flush with adjacent floor. - 6. One piece full width of door opening. Notch thresholds to match profile of door jambs. ## 2.10 METAL DIVIDER STRIPS - A. Terrazzo type divider strips. - B. Heavy top type strip with 5 mm (3/16 inch) wide top and 38 mm (1-1/2 inch) long leg. - C. Embedded leg perforated and deformed for keying to mortar. - D. Aluminum or brass as specified in Section 09 06 00, SCHEDULE FOR FINISHES. #### 2.11 WATER Clean, potable and free from salts and other injurious elements to mortar and grout materials. #### 2.12 CLEANING COMPOUNDS - A. Specifically designed for cleaning masonry and concrete and which will not prevent bond of subsequent tile setting materials including patching and leveling compounds and elastomeric waterproofing membrane and coat. - B. Materials containing acid or caustic material not acceptable. #### 2.13 FLOOR MORTAR BED REINFORCING ASTM A185 welded wire fabric without backing, MW3 x MW3 (2 x 2W0.5 x W0.5). ## 2.14 POLYETHYLENE SHEET - A. Polyethylene sheet conforming to ASTM D4397. - B. Nominal thickness: 0.15 mm (six mils). - C. Use sheet width to minimize joints. ## PART 3 EXECUTION ## 3.1 ENVIRONMENTAL REQUIREMENTS - A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before installation and not less than three days after installation. - B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation. - C. Do not install tile when the temperature is above 38 degrees C (100 degrees F). - D. Do not install materials when the temperature of the substrate is below 16 degrees C (60 degrees F). - E. Do not allow temperature to fall below 10 degrees C (50 degrees F) after fourth day of completion of tile work. ## 3.2 ALLOWABLE TOLERANCE - A. Variation in plane of subfloor, including concrete fills leveling compounds and mortar beds: - 1. Not more than 1 in 500 (1/4 inch in 10 feet) from required elevation where Portland cement mortar setting bed is used. - 2. Not more than 1 in 1000 (1/8 inch in 10 feet) where dry-set Portland cement, and latex-Portland cement mortar setting beds and chemical-resistant bond coats are used. - B. Variation in Plane of Wall Surfaces: - 1. Not more than 1 in 400 (1/4 inch in eight feet) from required plane where Portland cement mortar setting bed is used. - 2. Not more than 1 in 800 (1/8 inch in eight feet) where dryset or latexPortland cement mortar or organic adhesive setting materials is used. ## 3.3 SURFACE PREPARATION - A. Cleaning New Concrete or Masonry: - Chip out loose material, clean off all oil, grease dirt, adhesives, curing compounds, and other deterrents to bonding by mechanical method, or by using products specifically designed for cleaning concrete and masonry. - 2. Use selfcontained power blast cleaning systems to remove curing compounds and steel trowel finish from concrete slabs where ceramic tile will be installed directly on concrete surface with thinset materials. - 3. Steam cleaning or the use of acids and solvents for cleaning will not be permitted. - B. Patching and Leveling: - 1. Mix and apply patching and leveling compound in accordance with manufacturer's instructions. - 2. Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound. - a. Thickness of compound as required to bring finish tile system to elevation shown. - b. Float finish - c. At substrate expansion, isolation, and other moving joints, allow joint of same width to continue through underlayment. - 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane. - 4. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane. - C. Mortar Bed for Slopes to Drains: - 1. Slope compound to drain where drains are shown. - 2. Install mortar bed in depressed slab sloped to drains not less than 1 in 200 (1/16 inch per foot). - 3. Allow not less than 50 mm (2 inch) depression at edge of depressed slab. - 4. Screed
for slope to drain and float finish. - 5. Cure mortar bed for not less than seven days. Do not use curing compounds or coatings. - D. Additional preparation of concrete floors for tile set with epoxy, or furanresin shall be in accordance with the manufacturer's printed instructions. ## E. Cleavage Membrane: - 1. Install polythene sheet as cleavage membrane in depressed slab when waterproof membrane is not scheduled or indicated. - 2. Turn up at edge of depressed floor slab to top of floor. #### F. Walls: - 1. In showers or other wet areas cover studs with polyethylene sheet. - 2. Apply patching and leveling compound to concrete and masonry surfaces that are out of required plane. - 3. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane. - 4. Apply metal lath to framing in accordance with ANSI A108.1: - a. Use fasteners specified in paragraph "Fasteners." Use washers when lath opening is larger than screw head. - b. Apply scratch and leveling coats to metal lath in accordance with ANSI A108.1.C. - c. Total thickness of scratch and leveling coats: - 1) Apply 9 mm to 16 mm (3/8 inch to 5/8 inch) thick over solid backing. - 2) 16 mm to 19 mm (5/8 to 3/4 inch) thick on metal lath over stude - 3) Where wainscots are required to finish flush with wall surface above, adjust thickness required for flush finish. - d. Apply scratch and leveling coats more than 19 mm (3/4 inch) thick in two coats. ## G. Existing Floors and Walls: 1. Remove existing composition floor finishes and adhesive. Prepare surface by grinding, chipping, self-contained power blast cleaning or other suitable mechanical methods to completely expose uncontaminated concrete or masonry surfaces. Follow safety requirements of ANSI A10.20. - 2. Remove existing concrete fill or topping to structural slab. Clean and level the substrate for new setting bed and waterproof membrane or cleavage membrane. - 3. Where new tile bases are required to finish flush with plaster above or where they are extensions of similar bases in conjunction with existing floor tiles cut channel in floor slab and expose rough wall construction sufficiently to accommodate new tile base and setting material. ## 3.4 CEMENTITIOUS BACKER UNITS - A. Remove polyethylene wrapping from cementitious backer units and separate to allow for air circulation. Allow moisture content of backer units to dry down to a maximum of 35 percent before applying joint treatment and tile. - B. Install in accordance with ANSI A108.11 except as specified otherwise. - C. Install units horizontally or vertically to minimize joints with end joints over framing members. Units with rounded edges; face rounded edge away from studs to form a V joint for joint treatment. - D. Secure cementitious backer units to each framing member with screws spaced not more than 200 mm (eight inches) on center and not closer than 13 mm (1/2 inch) from the edge of the backer unit or as recommended by backer unit manufacturer. Install screws so that the screw heads are flush with the surface of the backer unit. - E. Where backer unit joins shower pans or waterproofing, lap backer unit over turned up waterproof system. Install fasteners only through top one-inch of turned up waterproof systems. - F. Do not install joint treatment for seven days after installation of cementitious backer unit. #### G. Joint Treatment: - Fill horizontal and vertical joints and corners with latexPortland cement mortar. Apply fiberglass tape over joints and corners and embed with same mortar. - 2. Leave 6 mm (1/4 inch) space for sealant at lips of tubs, sinks, or other plumbing receptors. ## 3.5 GLASS MAT WATER-RESISTANT GYPSUM BACKER BOARD - A. Install in accordance with manufacturer's instructions. TCA Systems W245-01. - B. Treat joints with tape and latex-Portland cement mortar or adhesive. #### 3.6 MARBLE - A. Secure thresholds and stools in position with minimum of two stainless steel dowels. - B. Set in dryset Portland cement mortar or latexPortland cement mortar bond coat. - C. Set threshold to finish 12mm (1/2 inch) above ceramic tile floor unless shown otherwise, with bevel edge joint top flush with adjacent floor similar to TCA detail TR611-02. ## 3.7 METAL DIVIDER STRIPS - A. Install metal divider strips in floor joints between ceramic and quarry tile floors and between tile floors and adjacent flooring of other materials where the finish floors are flush unless shown otherwise. - B. Set divider strip in mortar bed to line and level centered under doors or in openings. ## 3.8 CERAMIC TILE GENERAL - A. Comply with ANSI A108 series of tile installation standards in "Specifications for Installation of Ceramic Tile" applicable to methods of installation. - B. Comply with TCA Installation Guidelines: - C. Installing Mortar Beds for Floors: - 1. Install mortar bed to not damage cleavage or waterproof membrane; 32 mm (1-1/2 inch) minimum thickness. - 2. Install floor mortar bed reinforcing centered in mortar fill. - 3. Screed finish to level plane or slope to drains where shown, float finish. - 4. For thin set systems cure mortar bed not less than seven days. Do not use curing compounds or coatings. - 5. For tile set with Portland cement paste over plastic mortar bed coordinate to set tile before mortar bed sets. - D. Setting Beds or Bond Coats: - Where recessed or depressed floor slabs are filled with Portland cement mortar bed, set ceramic mosaic floor tile in either Portland cement paste over plastic mortar bed or latexPortland cement mortar - over cured mortar bed except as specified otherwise, ANSI A108-1C, TCA System F121-02 or F111-02. - 2. Set wall tile installed over concrete or masonry in dryset Portland cement mortar, or latexPortland cement mortar, ANSI 108.1B.and TCA System W211-02, W221-02 or W222-02. - 3. Set wall tile installed over concrete backer board in latexPortland cement mortar, ANSI A108.1B. - 4. Set wall tile installed over Portland cement mortar bed on metal lath base in Portland cement paste over plastic mortar bed, or dryset Portland cement mortar or latexPortland cement mortar over a cured mortar bed, ANSI A108.1C, TCA System W231-02, W241-02. - 5. Set tile installed over gypsum board and gypsum plaster in organic adhesive, ANSI A108.4, TCA System W242-02. - 6. Set trim shapes in same material specified for setting adjoining tile. ## E. Workmanship: - 1. Lay out tile work so that no tile less than onehalf full size is used. Make all cuts on the outer edge of the field. 2. Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise. - 3. Form intersections and returns accurately. - 4. Cut and drill tile neatly without marring surface. - 5. Cut edges of tile abutting penetrations, finish, or builtin items: - a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile. - b. Seal tile joints water tight as specified in Section 07 92 00, JOINT SEALANTS, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place. - 6. Completed work shall be free from hollow sounding areas and loose, cracked or defective tile. - 7. Remove and reset tiles that are out of plane or misaligned. ## 8. Floors: - a. Extend floor tile beneath casework and equipment, except those units mounted in wall recesses. - b. Align finish surface of new tile work flush with other and existing adjoining floor finish where shown. - c. In areas where floor drains occur, slope to drains where shown. d. Shove and vibrate tiles over 200 mm (8 inches) square to achieve full support of bond coat. #### 9. Walls: - a. Cover walls and partitions, including pilasters, furred areas, and freestanding columns from floor to ceiling, or from floor to nominal wainscot heights shown with tile. - b. Finish reveals of openings with tile, except where other finish materials are shown or specified. - c. At window openings, provide tile stools and reveals, except where other finish materials are shown or specified. - d. Finish wall surfaces behind and at sides of casework and equipment, except those units mounted in wall recesses, with same tile as scheduled for room proper. ## 10. Joints: - a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise. - b. Make joints 2 mm (1/16 inch) wide for glazed wall tile and mosaic tile work. - c. Make joints in quarry tile work not less than 6 mm (1/4 inch) nor more than 9 mm (3/8 inch) wide. Finish joints flush with surface of tile. - d. Make joints in Paver tile, porcelain type; maximum 3 mm (1/8 inch) wide. - 11. Back Buttering: For installations indicated below, obtain 100 percent mortar coverage by complying with applicable special requirements for back buttering of tile in referenced ANSI A108 series of tile installation standards: - a. Tile wall installations in wet areas, including showers, tub enclosures, laundries and swimming pools. - b. Tile installed with chemical-resistant mortars and grouts. - c. Tile wall installations composed of tiles 200 by 200 mm (8 by 8 inches or larger. - d. Exterior tile wall installations. ## 3.9 CERAMIC TILE INSTALLED WITH PORTLAND CEMENT MORTAR - A. Mortar Mixes for Floor, Wall And Base Tile (including Showers): ANSI A108.1.except specified otherwise. - B. Installing Wall and Base Tile: ANSI A108.1, except specified otherwise. C. Installing Floor Tile: ANSI A108.1, except as specified otherwise. Slope mortar beds to floor drains a minimum of 1 in 100 (1/8 inch per foot). #### 3.10 PORCELAIN TILE INSTALLED WITH LATEX PORTLAND CEMENT BONDONG MORTAR Due to the denseness of porcelain tile use latex Portland cement bonding mortar that meets the requirements of ANSI Al18.4.Bonding mortars shall be mixed in accordance with manufacturer's instructions.
Improper liquid ratios and dwell time before placement of bonding mortar and tile shall affect bond. # 3.11 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH DRYSET PORTLAND CEMENT AND LATEX-PORTLAND CEMENT MORTAR - A. Installation of Tile: ANSI A108.5, except as specified otherwise. - B. Slope tile work to drains not less than 1 in 100 (1/8 inch per foot). # 3.12 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH ORGANIC ADHESIVE Installation of Tile: ANSI A108.4. # 3.13 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH CHEMICALRESISTANT BOND COAT - A. Epoxy Resin Type: Install tile in accordance with Installation of Tile with Epoxy Mortar; ANSI A108.6. - B. Furan Resin Type: Proportion, mix and place in accordance with the manufacturer's printed instructions. Set tile in accordance with ANSI A108.8. #### 3.15 GROUTING - A. Grout Type and Location: - Grout for glazed wall and base tile, paver tile and unglazed mosaic tile: epoxy grout. - B. Workmanship: - 1. Install and cure grout in accordance with the applicable standard. - 2. Portland Cement grout: ANSI A108.10. - 3. Epoxy Grout: ANSI A108.6. - 4. Furan and Commercial Portland Cement Grout: ANSI A108.8 and in accordance with the manufacturer's printed instructions. - 5. Dry-set grout: ANSI A108.5. ## 3.16 MOVEMENT JOINTS - A. Prepare tile expansion, isolation, construction and contraction joints for installation of sealant. Refer to Section 07 92 00, JOINT SEALANTS. - B. TCA details EJ 171-02. - C. At expansion joints, rake out joint full depth of tile and setting bed and mortar bed. Do not cut waterproof or isolation membrane. - D. Rake out grout at joints between tile, service sink, at toe of base, and where shown not less than 6 mm (1/4 inch) deep. #### 3.17 CLEANING - A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths. - B. Methods and materials used shall not damage or impair appearance of tile surfaces. - C. The use of acid or acid cleaners on glazed tile surfaces is prohibited. - D. Clean tile grouted with epoxy, furan and commercial Portland cement grout and tile set in elastomeric bond coat as recommended by the manufacturer of the grout and bond coat. #### 3.18 PROTECTION - A. Keep traffic off tile floor, until grout and setting material is firmly set and cured. - B. Where traffic occurs over tile floor, cover tile floor with not less than 9 mm (3/8 inch) thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover until time for final inspection. Clean tile of any tape, adhesive and stains. ## 3.19 TESTING FINISH FLOOR A. Test floors in accordance with ASTM C627 to show compliance with codes 1 through 10. E N D # SECTION 09 65 16 RESILIENT SHEET FLOORING ## PART 1 GENERAL #### 1.1 DESCRIPTION - A. This Section specifies the installation of sheet flooring with backing and integral cove base. - B. Grades of resilient sheet vinyl floor covering without backing having vinyl plastic wearlayer with backing. - C. Installation of sheet flooring including following: - 1. Heat welded seams. - 2. Integral cove base: Installed at intersection of floor and vertical surfaces. ## 1.2 RELATED WORK - A. Concrete floors: Section 03 30 00, CAST-IN-PLACE CONCRETE. - B. Color, pattern and texture: Section 09 06 00, SCHEDULE FOR FINISHES. - C. Resilient base required over metal base of casework: Section 12 31 00, MANUFACTURED METAL CASEWORK. - D. Resilient base over base of lockers, equipment and casework: Section 09 65 13, RESILIENT BASE AND ACCESSORIES. - E. Unbacked vinyl (homogenous) sheet flooring with welded seams: Section 09 65 16, RESILIENT SHEET FLOORING. ## 1.3 QUALITY CONTROL-QUALIFICATIONS: - A. The Contracting Officer shall approve products or service of proposed manufacturer, suppliers, and installers, and the Contractor shall submit certification that: - 1. Heat welded seaming is manufacturer's prescribed method of installation. - 2. Installer is approved by manufacturer of materials and has technical qualifications, experience, trained personnel, and facilities to install specified items. - 3. Manufacturer's product submitted has been in satisfactory operation, on three installations similar and equivalent in size to this project for three years. Submit list of installations. - B. The sheet vinyl floor coverings shall meet fire performance characteristics as determined by testing products, per ASTM test method, indicated below by Underwriters Laboratories, Inc. (UL) or another recognized testing and inspecting agency acceptable to authorities having jurisdiction. - 1. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E648. - 2. Smoke Density: Less than 450 per ASTM E662. - C. The floor covering manufacturer shall certify that products supplied for installation comply with local regulations controlling use of volatile organic compounds (VOC's). ## 1.4 SUBMITTALS - A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, submit following: - B. Manufacturer's Literature and Data: - 1. Description of resilient material and accessories to be provided. - Resilient material manufacturer's recommendations for adhesives, weld rods, sealants, and underlayment. - 3. Application and installation instructions. ## C. Samples: - 1. Sheet material, 38 mm by 300 mm (1-1/2 inch by 12 inch), of each color and pattern with a welded seam using proposed welding rod 300 mm (12 inches) square for each type, pattern and color. - 2. Cap strip and fillet strip, 300 mm (12 inches) for integral base. - 3. Shop Drawings and Certificates: Layout of joints showing patterns where joints are expressed, and type and location of obscure type joints. Indicate orientation of directional patterns. - 4. Certificates: Quality Control Certificate Submittals and lists specified in paragraph, QUALIFICATIONS. - 5. Edge strips: 150 mm (6 inches) long each type. - 6. Adhesive, underlayment and primer: Pint container, each type. ## 1.5 PROJECT CONDITIONS - A. Maintain temperature of floor materials and room, where work occurs, above 18 $^{\circ}$ C (65 $^{\circ}$ F) and below 38 $^{\circ}$ C (100 $^{\circ}$ F) for 48 hours before, during and for 48 hours after installation. After above period, room temperature shall not fall below 13 $^{\circ}$ C (55 $^{\circ}$ F). - B. Construction in or near areas to receive flooring work shall be complete, dry and cured. Do not install resilient flooring over slabs until they have been cured and are sufficiently dry to achieve a bond with adhesive. Follow flooring manufacturer's recommendations for bond and moisture testing. - C. Building shall be permanently enclosed. Schedule construction so that floor receives no construction traffic when completed. ## 1.6 DELIVERY, STORAGE AND HANDLING - A. Deliver materials to site in original sealed packages or containers; labeled for identification with manufacturer's name and brand. - B. Deliver sheet flooring full width roll, completely enclosed in factory wrap, clearly marked with the manufacturer's number, type and color, production run number and manufacture date. - C. Store materials in weathertight and dry storage facility. Protect from damage due to handling, weather, and construction operations before, during and after installation. Store sheet flooring on end with ambient temperatures maintained as recommended by manufacturer. - D. Store sheet flooring on end. - E. Move sheet vinyl floor coverings and installation accessories into spaces where they will be installed at least 48 hours in advance of installation. ## 1.7 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. - B. American Society For Testing Materials (ASTM): | E648-09 | Critical | Radiant | Flux | of | Floor-Covering | Systems | |---------|-----------|---------|--------|------|----------------|---------| | | Using a 1 | Radiant | Enerav | , Sc | ource. | | | E662-09 | Specific | Optical | Density | of | Smoke | Generated | bу | |---------|-----------|----------|---------|----|-------|-----------|----| | | Solid Mat | cerials. | | | | | | | F710-08 | Practice for Preparing Concrete Floors and | |---------|--| | | Other Monolithic Floors to Receive Resilient | | | Flooring. | | F1303-04 Sheet Vinyl Floor Covering with Backing. | |---| | F1869-04Moisture Vapor Emission Rate of Concrete | | Subfloor using Anhydrous Calcium Chloride | | F1913-04Sheet Vinyl Flooring without Backing | | F2170-09Determining Relative Humidity in Concrete Floor | | Slabs using In-situ Probes | C. Resilient Floor Covering Institute (RFCI): Recommended Work Practices for Removal of Resilient Floor Coverings. ## 1.8 SCHEDULING Interior finish work such as plastering, drywall finishing, concrete, terrazzo, ceiling work, and painting work shall be complete and dry before installation. Mechanical, electrical, and other work above ceiling line shall be completed. Heating, ventilating, and air conditioning systems shall be installed and operating in order to maintain temperature and humidity requirements. ## 1.9 WARRANTY: Submit written warranty, in accordance with FAR clause 52.246-21, Warranty of Construction requirements except that warranty period shall be extended to include two (2) years. ## PART 2 - PRODUCTS ## 2.1 SHEET VINYL FLOOR COVERINGS - A. Sheet Vinyl Floor Coverings: Smooth face, minimum thickness nominal 2 mm (0.08 inch). Sheet flooring shall conform to ASTM F1913 and material requirements specified in ASTM F1303, Type II, Grade 1, backing classification not applicable. Foam backed sheet flooring is not acceptable. - B. Size: Provide maximum size sheet vinyl material produced by manufacturer to provide minimum number of joints. Minimum size width acceptable 1200 mm (48 inches). - C. Each color and pattern of sheet flooring shall
be of same production run. ## 2.2 WELDING ROD: Product of floor covering manufacturer in color shall match field color of sheet vinyl covering. ## 2.3 APPLICATION MATERIALS AND ACCESSORIES - A. Floor and Base Adhesive: Type recommended by sheet flooring material manufacturer for conditions of use. - B. Mastic Underlayment (for concrete floors): Provide products with latex or polyvinyl acetate resins in mix. Condition to be corrected shall determine type of underlayment selected for use. ## C. Base Accessories: - 1. Fillet Strip: 19 mm (3/4 inch) radius fillet strip compatible with resilient sheet material. - 2. Cap Strip: Extruded flanged zero edge vinyl reducer strip approximately 25 mm (one inch) exposed height with 13 mm (1/2 inch) flange. ## 2.4 SHEET FLOORING - A. ASTM F1303, Type II, Grade 1, except for backing requirements. Foam backed sheet flooring is not acceptable. - B. Minimum nominal thickness 2 mm (0.08 inch); 1800 mm (6 ft) minimum width. - C. Critical Radiant Flux: 0.45 watts per sq.cm or more, Class I, per ASTM E648. - D. Smoke density: less than 450 per ASTM E662. - E. Color and pattern of sheet flooring of the same production run. ## 2.5 ADHESIVES Water resistant type recommended by the sheet flooring manufacturer for the conditions of use. VOC not to exceed 50g/L ## 2.6 BASE CAP STRIP AND COVE STRIP - A. Extruded vinyl compatible with the sheet flooring. - B. Cap strip "J" shape with feathered edge flange approximately 25 mm (one inch) wide; top designed to receive sheet flooring with 13 mm (1/2 inch) flange lapping top of flooring - C. Cove strip 70 mm (2-3/4 inch) radius. ## 2.7 LEVELING COMPOUND (FOR CONCRETE FLOORS) Provide cementitious products with latex or polyvinyl acetate resins in the mix. ## 2.8 PRIMER (FOR CONCRETE SUBFLOORS) As recommended by the adhesive or sheet flooring manufacturer. ## 2.9 EDGE STRIPS - A. Extruded aluminum, mill finish, mechanically cleaned. - B. 28 mm (1-1/8 inch) wide, 6 mm (1/4 inch) thick, bevel one edge to 3 mm (1/8 inch) thick. - C. Drill and counter sink edge strips for flat head screws. Space holes near ends and approximately 225 mm (9 inches) on center in between. ## 2.10 SEALANT - A. As specified in Section 07 92 00, JOINT SEALANTS. - B. Compatible with sheet flooring. ## PART 3 EXECUTION #### 3.1 PROJECT CONDITIONS - A. Maintain temperature of sheet flooring above 36 $^{\circ}$ C (65 $^{\circ}$ F), for 48 hours before installation. - B. Maintain temperature of rooms where sheet flooring work occurs above $36\ ^{\circ}\text{C}\ (65\ ^{\circ}\text{F})$, for $48\ \text{hours}$, before installation and during installation. - C. After installation, maintain temperature at or above 36 °C (65 °F.) - D. Building is permanently enclosed. - E. Wet construction in or near areas to receive sheet flooring is complete, dry and cured. #### 3.2 SUBFLOOR PREPARATION - A. Concrete Subfloors: Verify that concrete slabs comply with ASTM F710. - 1. Installer shall examine surfaces on which resilient sheet flooring is to be installed, and shall advise Contractor, in writing, of areas which are unacceptable for installation of flooring material. Installer shall advise Contractor which methods are to be used to correct conditions that will impair proper installation. Installation shall not proceed until unsatisfactory conditions have been corrected. - 2. Slab substrates dry, free of curing compounds, sealers, hardeners, and other materials which would interfere with bonding of adhesive. Determine adhesion and dryness characteristics by performing bond and moisture tests recommended by Resilient Floor Covering Institute recommendations in manual RFCI-MRP. - B. Broom or vacuum clean substrates to be covered by sheet vinyl floor coverings immediately before installation. Following cleaning, examine substrates to determine if there is visually any evidence of moisture, alkaline salts, carbonation, or dust. - C. Primer: If recommended by flooring manufacturer, prior to application of adhesive, apply concrete slab primer in accordance with manufacturer's directions. - D. Correct conditions which will impair proper installation, including trowel marks, pits, dents, protrusions, cracks or joints. - E. Fill cracks, joints, depressions, and other irregularities in concrete with leveling compound. - 1. Do not use adhesive for filling or leveling purposes. - 2. Do not use leveling compound to correct imperfections which can be corrected by spot grinding. - 3. Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joint lines. - F. Clean floor of oil, paint, dust and deleterious substances. Leave floor dry and cured free of residue from existing curing or cleaning agents. - G. Moisture Testing: Perform moisture and pH test as recommended by the flooring and adhesive manufacturers. Perform test locations starting on the deepest part of the concrete structure. Proceed with installation only after concrete substrates meet or exceed the manufacturer's requirements. In the absence of specific guidance from the flooring or adhesive manufacturer the following requirements are to be met: - Perform moisture vapor emission tests in accordance with ASTM F1869. Proceed with installation only after substrates have a maximum moisture-vapor-emission rate of 1.36 kg of water/92.9 sq. m (3lb of water/1000 sq. ft.) in 24 hours. - 2. Perform concrete internal relative humidity testing using situ probes in accordance with ASTM F2170. Proceed with installation only after concrete reaches maximum 75 percent relative humidity level measurement. - H. Preparation shall include the removal of existing resilient floor and existing adhesive. Do not use solvents to remove adhesives. Coordinate with Asbestos Abatement Section if asbestos abatement procedures will be involved. SPEC WRITER NOTE: Delete Article below if this is a new project installation and not a renovation project. I. Remove existing resilient flooring and adhesive completely in accordance with Resilient Floor Covering Institute recommendations in manual RFCI-WP. Solvents shall not be used. #### 3.3 INSTALLATION OF FLOORING - A. Install work in strict compliance with manufacturer's instructions and approved layout drawings. - B. Maintain uniformity of sheet vinyl floor covering direction and avoid cross seams. - C. Arrange for a minimum number of seams and place them in inconspicuous and low traffic areas, but in no case less than 150 mm (6 inches) away from parallel joints in flooring substrates. - D. Match edges of resilient floor coverings for color shading and pattern at seams. - E. Where resilient sheet flooring abuts other flooring material floors shall finish level. - F. Extend sheet vinyl floor coverings into toe spaces, door reveals, closets, and similar openings. - G. Inform the Resident Engineer of conflicts between this section and the manufacturer's instructions or recommendations for auxiliary materials, or installation methods, before proceeding. - H. Install sheet in full coverage adhesives. - 1. Air pockets or loose edges will not be accepted. - 2. Trim sheet materials to touch in the length of intersection at pipes and vertical projections; seal joints at pipe with waterproof cement or sealant. - I. Keep joints to a minimum; avoid small filler pieces or strips. - J. Follow manufacturer's recommendations for seams at butt joints. Do not leave any open joints that would be readily visible from a standing position. - K. Follow manufacturer's recommendations regarding pattern match, if applicable. - L. Installation of Edge Strips: - 1. Locate edge strips under center lines of doors unless otherwise indicated. - 2. Set aluminum strips in adhesive, anchor with lead anchors and stainless steel Phillips screws. - M. Integral Cove Base Installation: - 1. Set preformed fillet strip to receive base. - 2. Install the base with adhesive, terminate expose edge with the cap strip. - 3. Form internal and external corners to the geometric shape generated by the cove at either straight or radius corners. - 4. Solvent weld joints as specified for the flooring. Seal cap strip to wall with an adhesive type sealant. - 5. Unless otherwise specified or shown where sheet flooring is scheduled, provide integral base at intersection of floor and vertical surfaces. Provide sheet flooring and base scheduled for room on floors and walls under and behind areas where casework, laboratory and pharmacy furniture and other equipment occurs, except where mounted in wall recesses. ## 3.4 INSTALLATION OF INTEGRAL COVED BASE - A. Set preformed cove to receive base. Install base material with adhesive and terminate exposed edge with cap strip. Integral base shall be 150 mm (6 inches) high. - B. Internal and external corners shall be formed to geometric shape generated by cove at either square or radius corners. ## 3.5 WELDING - A. Heat weld all joints of flooring and base using equipment and procedures recommended by flooring manufacturer. - B. Welding shall consist of routing joint, inserting a welding rod into routed space, and terminally fusing into a homogeneous joint. - C. Upon completion of welding, surface across joint shall finish flush, free from voids, and recessed or raised areas. - D. Fusion of Material: Joint shall be fused a minimum of 65 percent through thickness of material, and after welding shall meet specified characteristics for flooring. #### 3.6 CLEANING - A. Clean small adhesive marks during application of sheet flooring and base before adhesive sets, excessive adhesive smearing will not be accepted. - B. Remove visible adhesive and other surface blemishes using methods and cleaner recommended by floor covering manufacturers. - C. Clean and polish materials per flooring manufacturer's written recommendations. - D. Vacuum floor thoroughly. - E. Do not wash floor until after period recommended by floor covering manufacturer and then prepare in accordance with manufacturer's recommendations. - F. Upon completion,
Resident Engineer shall inspect floor and base to ascertain that work was done in accordance with manufacturer's printed instructions. - G. Perform initial maintenance according to flooring manufacturer's written recommendations. ## 3.7 PROTECTION: - A. Protect installed flooring as recommended by flooring manufacturer against damage from rolling loads, other trades, or placement of fixtures and furnishings. - B. Keep traffic off sheet flooring for 24 hours after installation. - C. Where construction traffic is anticipated, cover sheet flooring with reinforced kraft paper properly secured and maintained until removal is authorized by the Resident Engineer. - D. Where protective materials are removed and immediately prior to acceptance, repair any damage, re-clean sheet flooring, lightly reapply polish and buff floor. E N D # SECTION 09 91 00 PAINTING #### PART 1-GENERAL #### 1.1 DESCRIPTION - A. Section specifies field painting. - B. Section specifies prime coats which may be applied in shop under other sections. - C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings. #### 1.2 RELATED WORK - A. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 OPENINGS, Division 10 SPECIALTIES, Division 11 EQUIPMENT, Division 12 FURNISHINGS, Division 13 SPECIAL CONSTRUCTION, Division 14 CONVEYING EQUIPMENT, Division 21 FIRE SUPPRESSION, Division 22 PLUMBING, Division 23 HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 ELECTRICAL, Division 27 COMMUNICATIONS, and Division 28 ELECTRONIC SAFETY AND SECURITY sections. - B. Contractor option: Prefinished flush doors with transparent finishes: Section 08 14 00, WOOD DOORS. - C. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES. # 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable. # C. Sample Panels: 1. After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified. - 2. Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch). - 3. Panel to show transparent finishes: Wood of same species and grain pattern as wood approved for use, 100 by 250 by 3 mm (4 inch by 10 inch face by 1/4 inch) thick minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 by 50 mm (2 by 2 inch) minimum or actual wood member to show complete finish. - 4. Attach labels to panel stating the following: - a. Federal Specification Number or manufacturers name and product number of paints used. - b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES. - c. Product type and color. - d. Name of project. - 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat. - D. Sample of identity markers if used. - E. Manufacturers' Certificates indicating compliance with specified requirements: - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified. - 2. High temperature aluminum paint. - 3. Epoxy coating. - 4. Intumescent clear coating or fire retardant paint. - 5. Plastic floor coating. ### 1.4 DELIVERY AND STORAGE - A. Deliver materials to site in manufacturer's sealed container marked to show following: - 1. Name of manufacturer. - 2. Product type. - 3. Batch number. - 4. Instructions for use. - 5. Safety precautions. - B. In addition to manufacturer's label, provide a label legibly printed as following: - 1. Federal Specification Number, where applicable, and name of material. - 2. Surface upon which material is to be applied. - 3. If paint or other coating, state coat types; prime, body or finish. - C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items. - D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F). #### 1.6 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. - B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2008Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs) ACGIH TLV-DOC-2008Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition) C. American National Standards Institute (ANSI): A13.1-07Scheme for the Identification of Piping Systems - D. American Society for Testing and Materials (ASTM): - D. American Society for Testing and Materials (ASTM): D260-86.....Boiled Linseed Oil - E. Commercial Item Description (CID): - A-A-3120Paint, For Swimming Pools (RF) (cancelled) - F. Federal Specifications (Fed Spec): - TT-P-1411APaint, Copolymer-Resin, Cementitious (For Waterproofing Concrete and Masonry Walls) (CEP) - G. Master Painters Institute (MPI): - No. 18-07Organic Zinc Rich Primer - No. 22-07Aluminum Paint, High Heat (up to 590% 1100F) (HR) - No. 26-07Cementitious Galvanized Metal Primer - No. 31-07Polyurethane, Moisture Cured, Clear Gloss (PV) - No. 43-07Interior Satin Latex, MPI Gloss Level 4 - No. 44-07Interior Low Sheen Latex, MPI Gloss Level 2 - No. 45-07Interior Primer Sealer - No. 46-07Interior Enamel Undercoat | | No. 50-07Interior Latex Primer Sealer | |---|--| | | No. 52-07Interior Latex, MPI Gloss Level 3 (LE) | | | No. 53-07Interior Latex, Flat, MPI Gloss Level 1 (LE) | | | No. 54-07Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE) | | | No. 71-07Polyurethane, Moisture Cured, Clear, Flat (PV) | | | No. 77-07Epoxy Cold Cured, Gloss (EC) | | | No. 79-07Marine Alkyd Metal Primer | | | No. 90-07Interior Wood Stain, Semi-Transparent (WS) | | | No. 91-07Wood Filler Paste | | | No. 95-07Fast Drying Metal Primer | | | No. 98-07High Build Epoxy Coating | | | No. 101-07Epoxy Anti-Corrosive Metal Primer | | | No. 108-07 | | | No. 114-07Interior Latex, Gloss (LE) and (LG) | | | No. 135-07Non-Cementitious Galvanized Primer | | | No. 138-07Interior High Performance Latex, MPI Gloss Level 2 | | | (LF) | | | No. 139-07Interior High Performance Latex, MPI Gloss Level 3 | | | (LL) | | | No. 140-07Interior High Performance Latex, MPI Gloss Level 4 | | | No. 141-07Interior High Performance Latex (SG) MPI Gloss | | | Level 5 | | • | Steel Structures Painting Council (SSPC): | | | SSPC SP 1-04 (R2004)Solvent Cleaning | | | SSPC SP 2-04 (R2004)Hand Tool Cleaning | | | SSPC SP 3-04 (R2004)Power Tool Cleaning | | | | ## PART 2 - PRODUCTS ## 2.1 MATERIALS Н. - A. Wood Sealer: MPI 31 (gloss) or MPI 71 (flat) thinned with thinner recommended by manufacturer at rate of about one part of thinner to four parts of varnish. - B. Identity markers options: - 1. Pressure sensitive vinyl markers. - 2. Snap-on coil plastic markers. - C. Aluminum Paint (AP): MPI 1. - D. Interior/Exterior Latex Block Filler: MPI 4. - E. Exterior Latex, Flat (AE): MPI 10. - F. Exterior Latex, Semi-Gloss (AE): MPI 11. - G. Organic Zinc rich Coating (HR): MPI 22. - H. Cementitious Galvanized Metal Primer: MPI 26. - I. Knot Sealer: MPI 36. - J. Interior Satin Latex: MPI 43. - K. Interior Primer Sealer: MPI 45. - L. Interior Enamel Undercoat: MPI 47. - M. Interior Latex Primer Sealer: MPI 50. - N. Interior Latex, MPI Gloss Level 3 (LE): MPI 52. - O. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53. - P. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54. - Q. Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR): MPI 67. - R. Interior Wood Stain, Semi-Transparent (WS): MPI 90. - S. Wood Filler Paste: MPI 91. - T. Fast Drying Metal Primer: MPI 95. - U. Epoxy Anti-Corrosive Metal Primer: MPI 101. - V. Interior latex, Gloss (LE) and (LG): MPI 114. - W. Non-Cementitious Galvanized Primer: MPI 135. - X. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138. - Y. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139. - Z. Interior High Performance Latex, MPI Gloss Level 4: MPI 140. - AA. Interior High Performance Latex (SG), MPI Gloss Level 5: MPI 141. ## 2.2 PAINT PROPERTIES - A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives. - B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified. ### 2.3 REGULATORY REOUIREMENTS/OUALITY ASSURANCE - A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction. - 1. Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers. - 2. Lead-Base Paint: - a.
Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development. - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development. - c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL. - 3. Asbestos: Materials shall not contain asbestos. - 4. Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica. - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens. - 6. Use high performance acrylic paints in place of alkyd paints, where possible. - 7. VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight. ## PART 3 - EXECUTION ## 3.1 JOB CONDITIONS - A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials. - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm - 2. Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work. - B. Atmospheric and Surface Conditions: - 1. Do not apply coating when air or substrate conditions are: - a. Less than 3 degrees C (5 degrees F) above dew point. - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations. - 2. Maintain interior temperatures until paint dries hard. - 3. Do no exterior painting when it is windy and dusty. - 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm. - 5. Apply only on clean, dry and frost free surfaces except as follows: - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions. - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface. #### 3.2 SURFACE PREPARATION A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays. ## B. General: - 1. Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried. - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different. - 3. See other sections of specifications for specified surface conditions and prime coat. - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. ### C. Wood: - 1. Sand to a smooth even surface and then dust off. - 2. Sand surfaces showing raised grain smooth between each coat. - 3. Wipe surface with a tack rag prior to applying finish. - 4. Surface painted with an opaque finish: - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint. - b. Apply two coats of MPI 36 (Knot Sealer) over large knots. - 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface. - 6. Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces. - 7. Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color. - a. Thin filler in accordance with manufacturer's instructions for application. - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified. #### D. Ferrous Metals: - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning). - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions. - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces. - a. This includes flat head countersunk screws used for permanent anchors. - b. Do not fill screws of item intended for removal such as glazing beads. - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat. - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item. - E. Zinc-Coated (Galvanized) Metal, Aluminum, Surfaces Specified Painted: - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning). - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility. - F. Gypsum Plaster and Gypsum Board: - 1. Remove efflorescence, loose and chalking plaster or finishing materials. - 2. Remove dust, dirt, and other deterrents to paint adhesion. - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board. ## 3.3 PAINT PREPARATION - A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition. - B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions. - C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles. - D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise. - E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer. ## 3.4 APPLICATION - A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials. - B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat. - C. Apply each coat evenly and cover substrate completely. - D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Contracting Officer's Representative (COR). - E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects. - F. Apply by brush, roller or spray, except as otherwise specified. - G. Do not spray paint in existing occupied spaces unless approved by Contracting Officer's Representative (COR), except in spaces sealed from existing occupied spaces. - 1. Apply painting materials specifically required by manufacturer to be applied by spraying. - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items. - H. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters. #### 3.5 PRIME PAINTING - A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified. - B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats. - C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat. - D. Prime rebates for stop and face glazing of wood, and for face glazing of steel. - E. Wood and Wood Particleboard: - 1. Use same kind of primer specified for exposed face surface. - a. Interior wood except for transparent finish: MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), thinned if recommended by manufacturer. - 2. Apply two coats of primer MPI 7
(Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) to surfaces of wood doors, including top and bottom edges, which are cut for fitting or for other reason. - 3. Apply one coat of primer MPI 7 (Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) as soon as delivered to site to surfaces of unfinished woodwork, except concealed surfaces of shop fabricated or assembled millwork and surfaces specified to have varnish, stain or natural finish. - 4. Back prime and seal ends of exterior woodwork, and edges of exterior plywood specified to be finished. - 5. Apply MPI 67 (Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) to wood for fire retardant finish. - F. Metals except boilers, incinerator stacks, and engine exhaust pipes: - 1. Steel and iron: MPI 95 (Fast Drying Metal Primer). - 2. Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non-Cementitious Galvanized Primer). - 3. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer). - 4. Asphalt coated metal: MPI 1 (Aluminum Paint (AP)). - 5. Metal over 94 degrees C. (200 degrees F), Boilers, Incinerator Stacks, and Engine Exhaust Pipes: MPI 22 (High Heat Resistant Coating (HR)). - G. Gypsum Board and Hardboard: - 1. Surfaces scheduled to have MPI 52 (Interior Latex, MPI Gloss Level 3 (LE)): Use Semi-Gloss (AE)) or MPI 53 (Interior Latex, MPI Gloss Level 3 (LE)) nd (LG)) respectively. - 2. Primer: MPI 50 (Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) in shower and bathrooms. - 4. Use MPI 101 (Cold Curing Epoxy Primer) for surfaces scheduled to receive MPI 77 (Epoxy Cold Cured, Gloss (EC)) MPI 108 (High Build Epoxy Marine Coating (EC)) finish. ### 3.7 INTERIOR FINISHES - A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES. - B. Metal Work: - 1. Apply to exposed surfaces. - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts. - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled: - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise. - b. Two coats of MPI 51 (Interior Alkyd, Eggshell (AK)). - c. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) on exposed interior surfaces of alkyd-amine enamel prime finished windows. - C. Gypsum Board: - 1. One coat of MPI 46 (Interior Enamel Undercoat) plus two coats of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)). - 2. One coat of MPI 45 (Interior Primer Sealer plus one coat of MPI 48 (Interior Alkyd Gloss (AK)). #### F. Wood: - 1. Sanding: - a. Use 220-grit sandpaper. - b. Sand sealers and varnish between coats. - c. Sand enough to scarify surface to assure good adhesion of subsequent coats, to level roughly applied sealer and varnish, and to knock off "whiskers" of any raised grain as well as dust particles. ## 2. Sealers: - a. Apply sealers specified except sealer may be omitted where pigmented, penetrating, or wiping stains containing resins are used. - b. Allow manufacturer's recommended drying time before sanding, but not less than 24 hours or 36 hours in damp or muggy weather. - c. Sand as specified. - 3 Transparent Finishes on Wood Except Floors. - a. Natural Finish: - 1) One coat of sealer as written in 2.1 E. - 2) Two coats of MPI 31 (Polyurethane, Moisture Cured, Clear Gloss (PV). - b. Stain Finish: - 1) One coat of MPI 90 (Interior Wood Stain, Semi-Transparent (WS)). - 2) Use wood stain of type and color required to achieve finish specified. Do not use varnish type stains. - 3) One coat of sealer as written in 2.1 E. - 4) Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV). ### 3.8 REFINISHING EXISTING PAINTED SURFACES - A. Clean, patch and repair existing surfaces as specified under surface preparation. - B. Remove and reinstall items as specified under surface preparation. - C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact. - D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components. - E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame. - F. In existing rooms and areas where alterations occur, clean existing stained and natural finished wood retouch abraded surfaces and then give - entire surface one coat of MPI 31 (Polyurethane, Moisture Cured, Clear Gloss). - G. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise. - H. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing. - I. Sand or dull glossy surfaces prior to painting. - J. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work. #### 3.9 PAINT COLOR - A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES. - B. Coat Colors: - 1. Color of priming coat: Lighter than body coat. - 2. Color of body coat: Lighter than finish coat. - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts. - D. Painting, Caulking, Closures, and Fillers Adjacent to Casework: - 1. Paint to match color of casework where casework has a paint finish. - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood. ## 3.10 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE - A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished. - B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified under paragraph H, colors. - C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY. - D. Paint after tests have been completed. - E. Omit prime coat from factory prime-coated items. - F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more. - G. Omit field painting of items specified in paragraph, Building and Structural WORK NOT PAINTED. - H. Color: - 1. Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces. - I. Apply paint systems on properly prepared and primed surface as follows: - 1. Interior Locations: - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) to following items: - 1) Metal under 94 degrees C (200 degrees F) of items such as bare piping, fittings, hangers and supports. - 2) Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards. - 3) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished. - c. Apply one coat of MPI 50 (Interior Latex Primer Sealer) and one coat of MPI 44 (Interior Low Sheen Latex) on finish of insulation on boiler breeching and uptakes inside boiler house, drums, drumheads, oil heaters, feed water heaters, tanks and piping. - d. Apply two coats of MPI 22 (High Heat Resistant Coating (HR)) to ferrous metal surface over 94 degrees K (200 degrees F) of following items: - 1) Garbage and trash incinerator. - 2) Medical waste incinerator. - 3) Exterior of boilers and ferrous metal in connection with boiler settings including supporting members, doors and door frames and fuel oil burning equipment. - 4) Steam line flanges, bare pipe, fittings, valves, hangers and supports over 94 degrees K (200 degrees F). - 5) Engine generator exhaust piping and muffler. - 3. Other exposed locations: - a. Metal surfaces, except aluminum, of cooling towers exposed to view, including connected pipes, rails, and ladders: Two coats of MPI 1 (Aluminum Paint (AP)). > b. Cloth jackets of insulation of ducts and pipes in connection with plumbing, air conditioning, ventilating refrigeration and heating systems: One coat of MPI 50 (Interior Latex Primer Sealer) and one coat of MPI 11 (Exterior Latex Semi-Gloss (AE). #### 3.11 BUILDING AND STRUCTURAL WORK FIELD PAINTING - A. Painting and finishing of interior and exterior work except as specified under paragraph 3.11 B. - 1. Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES. - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing. - 3. Painting of ferrous metal and galvanized metal. - 4. Painting of wood with fire retardant paint exposed in attics, when used as mechanical equipment space. - 5. Identity painting and safety painting. - B. Building and Structural Work not Painted: - 1. Prefinished items: - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections. - b. Factory finished equipment and pre-engineered metal
building components such as metal roof and wall panels. - 2. Finished surfaces: - a. Hardware except ferrous metal. - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified. - c. Signs, fixtures, and other similar items integrally finished. - 3. Concealed surfaces: - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified. - b. Inside walls or other spaces behind access doors or panels. - c. Surfaces concealed behind permanently installed casework and equipment. - 4. Moving and operating parts: - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices. - b. Tracks for overhead or coiling doors, shutters, and grilles. - 5. Labels: - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation. - b. Identification plates, instruction plates, performance rating, and nomenclature. - 6. Galvanized metal - 7. Gaskets. - 8. Structural steel encased in concrete, masonry, or other enclosure. - 9. Structural steel to receive sprayed-on fire proofing. - 10. Ceilings, walls, columns in interstitial spaces. - 11. Ceilings, walls, and columns in pipe basements. #### 3.12 IDENTITY PAINTING SCHEDULE - A. Identify designated service in accordance with ANSI A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. - 1. Legend may be identified using 2.1 G options or by stencil applications. - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12 000 mm (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required. - 3. Locate Legends clearly visible from operating position. - 4. Use arrow to indicate direction of flow. - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on drawings where asterisk appears for High, Medium, and Low Pressure designations as follows: - a. High Pressure 414 kPa (60 psig) and above. - b. Medium Pressure 104 to 413 kPa (15 to 59 psig). - c. Low Pressure 103 kPa (14 psig) and below. - d. Add Fuel oil grade numbers. - 6. Legend name in full or in abbreviated form as follows: COLOR OF COLOR OF LEGEND # PIPING EXPOSED PIPING BACKGROUND LETTERS BBREVIATIONS | Blow-off | | Yellow | Black | Blow-off | |---|------------|--------|----------|------------------| | Boiler Feedwater | Yellow | Black | Blr Feed | | | A/C Condenser Water Supply | | Green | White | A/C Cond Wtr Sup | | A/C Condenser Water Return | | Green | White | A/C Cond Wtr Ret | | Chilled Water Supply | | Green | White | Ch. Wtr Sup | | Chilled Water Return | | Green | White | Ch. Wtr Ret | | Chilled Water Return
Shop Compressed Air | | Yellow | Black | Shop Air | | Air-Instrument Controls | | Green | White | Air-Inst Cont | | Drain Line | | Green | White | Drain | | Emergency Shower | | Green | White | Emg Shower | | High Pressure Steam | | Yellow | Black | H.P. * | | High Pressure Condensat | e Return | Yellow | Black | H.P. Ret* | | Medium Pressure Steam | | Yellow | Black | M. P. Stm* | | Medium Pressure Condens | ate Return | Yellow | Black | M.P. Ret * | | Low Pressure Steam | | Yellow | Black | L.P. Stm* | | Low Pressure Condensate | Return | Yellow | Black | L.P. Ret * | | High Temperature Water | Supply | Yellow | Black | H. Temp Wtr Sup | | High Temperature Water | Return | Yellow | Black | H. Temp Wtr Ret | | Hot Water Heating Suppl | У | Yellow | Black | H. W. Htg Sup | | Hot Water Heating Retur | n | Yellow | Black | H. W. Htg Ret | | Gravity Condensate Retu | rn | Yellow | Black | Gravity Cond Ret | | Pumped Condensate Retur | n | Yellow | Black | Pumped Cond Ret | | Vacuum Condensate Retur | n | Yellow | Black | Vac Cond Ret | | Fuel Oil - Grade | | Green | White | Fuel Oil-Grade* | | Boiler Water Sampling | | Yellow | Black | Sample | | Chemical Feed | | Yellow | Black | Chem Feed | | Continuous Blow-Down | | Yellow | Black | Cont. B D | | Pumped Condensate | | Black | | Pump Cond | | Pump Recirculating | | Yellow | Black | Pump-Recirc. | | Vent Line | | Yellow | Black | Vent | | Alkali | | Yellow | Black | Alk | | Bleach | | Yellow | Black | Bleach | | Detergent | | Yellow | Black | Det | | Liquid Supply | | Yellow | Black | Liq Sup | | Reuse Water | | Yellow | Black | Reuse Wtr | | Cold Water (Domestic) | White | Green | White | C.W. Dom | | Hot Water (Domestic) | | | | | | Supply | White | Yellow | Black | H.W. Dom | | Return | White | Yellow | Black | H.W. Dom Ret | | Tempered Water | White | Yellow | Black | Temp. Wtr | | Ice Water | | | | | | Supply | White | Green | White | Ice Wtr | | Return | White | Green | White | Ice Wtr Ret | | | | | | | | Reagent Grade Water | Green | White | RG | |-------------------------|--------|-------|------------| | Reverse Osmosis | Green | White | RO | | Sanitary Waste | Green | White | San Waste | | Sanitary Vent | Green | White | San Vent | | Storm Drainage | Green | White | St Drain | | Pump Drainage | Green | White | Pump Disch | | Chemical Resistant Pipe | | | | | Waste | Yellow | Black | Acid Waste | | Vent | Yellow | Black | Acid Vent | | Atmospheric Vent | Green | White | ATV | | Silver Recovery | Green | White | Silver Rec | | Oral Evacuation | Green | White | Oral Evac | | Fuel Gas | Yellow | Black | Gas | | Fire Protection Water | | | | | Sprinkler | Red | White | Auto Spr | | Standpipe | Red | White | Stand | | Sprinkler | Red | White | Drain | | | | | | - 7. See Sections for methods of identification, legends, and abbreviations of the following: - a. Laboratory gas and vacuum lines: Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES / Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES. - b. Medical Gases and vacuum lines: Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES / Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES. - c. Conduits containing high voltage feeders over 600 volts: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS / Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS. #### B. Fire and Smoke Partitions: - 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high. - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable. - 3. Locate not more than 6100 mm (20 feet) on center on corridor sides of partitions, and with a least one message per room on room side of partition. - 4. Use semigloss paint of color that contrasts with color of substrate. - C. Identify columns in pipe basements and interstitial space: - 1. Apply stenciled number and letters to correspond with grid numbering and lettering shown. - 2. Paint numbers and letters 100 mm (4 inches) high, locate 450 mm (18 inches) below overhead structural slab. - 3. Apply on four sides of interior columns and on inside face only of exterior wall columns. - 4. Color: - a. Use black on concrete columns. - b. Use white or contrasting color on steel columns. # 3.14 PROTECTION CLEAN UP, AND TOUCH-UP - A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods. - B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears. - C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored. - - - E N D - - - # SECTION 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies manufactured items usually used in dressing rooms, toilets, baths, locker rooms and at sinks in related spaces. - B. Items Specified: - 1. Paper towel dispenser. - 2. Toilet tissue dispenser. - 3. Grab Bars. - 4. Shower curtain rods. - 5. Clothes hooks, robe or coat. - 6. Metal framed mirror. - 7. Soap dishes. - 8. Mop racks. - 9. Stainless steel shelves. - 10. Seat cover dispenser. - 11. Folding shower seat. - B. This section also specifies custom fabricated items used in toilets and related spaces. #### 1.2 RELATED WORK - A. Color of finishes: Section 09 06 00, SCHEDULE FOR FINISHES - B. Custom fabricated accessories: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES. - C. Manufactured toilet and bath accessories: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES. ## 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Shop Drawings: - 1. Each product specified. - 2. Paper towel dispenser and combination dispenser and disposal units. - 3. Metal framed mirrors, fillers, and design and installation of units when installed on ceramic tile wainscots and offset surfaces. - 4. Shower Curtain rods, showing required length for each location. - 5. Grab bars, showing design and each different type of anchorage. - 6. Show material and finish, size of members, and details of construction, installation and anchorage of mop racks. - C. Samples: - 1. One of each type of accessory specified. - 2. After approval, samples may be used in the work. - D. Manufacturer's Literature and Data: - 1. All accessories specified. - 2. Show type of material, gages or metal thickness in inches, finishes, and when required, capacity of accessories. - 3. Show working operations of spindle for toilet tissue dispensers. - 4. Mop racks. - E. Manufacturer's
Certificates: - 1. Attesting that soap dispensers are fabricated of material that will not be affected by liquid soap or aseptic detergents, Phisohex and solutions containing hexachlorophene. - 2. Anodized finish as specified. ## 1.4 OUALITY ASSURANCE - A. Each product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified. - B. Each accessory type shall be the same and be made by the same manufacturer. - C. Each accessory shall be assembled to the greatest extent possible before delivery to the site. - D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product. ### 1.5 PACKAGING AND DELIVERY - A. Pack accessories individually to protect finish. - B. Deliver accessories to the project only when installation work in rooms is ready to receive them. - C. Deliver inserts and rough-in frames to site at appropriate time for building-in. - D. Deliver products to site in sealed packages of containers; labeled for identification with manufacturer's name, brand, and contents. ## 1.6 STORAGE - A. Store products in weathertight and dry storage facility. - B. Protect from damage from handling, weather and construction operations before, during and after installation in accordance with manufacturer's instructions. #### 1.7 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM): A167-99(R2004)Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip. A176-99(R2004)Stainless and Heat-Resisting Chromium Steel Plate, Sheet, and Strip A269-07Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-06Seamless and Welded Austenitic Stainless Steel Pipes A653/A653M-07Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process B221-06Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B456-03Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium C1036-06Flat Glass C1048-04Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass D635-06Rate of Burning and/or Extent and Time of Burning of Self Supporting Plastics in a Horizontal Position F446-85 (R2004)Consumer Safety Specification for Grab Bars and Accessories Installed in the Bathing Area. A269-07Seamless and Welded Austenitic Stainless Steel Tubing for General Service D3453-01Flexible Cellular Materials - Urethane for Furniture and Automotive Cushioning, Bedding, and Similar Applications Fabrics C. The National Association of Architectural Metal Manufacturers (NAAMM): - C. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 SeriesMetal Finishes Manual AMP 500-505-88Metal Finishes Manual and Finishes for Stainless Steel D. American Welding Society (AWS): D10.4-86 (R2000)Welding Austenitic Chromium-Nickel Stainless Steel Piping and Tubing E. Federal Specifications (Fed. Specs.): A-A-3002Mirrors, Glass FF-S-107C (2)Screw, Tapping and Drive FF-S-107CScrew, Tapping and Drive. WW-P-541E(1)Plumbing Fixtures (Accessories, Land Use) Detail Specification #### PART 2 - PRODUCTS #### 2.1 MATERIALS - A. Aluminum: ASTM B221, alloy 6063-T5 and alloy 6463-T5. - B. Stainless Steel: - 1. Plate or sheet: ASTM A167, Type 302, 304, or 304L, except ASTM A176 where Type 430 is specified, 0.0299-inch thick unless otherwise specified. - 2. Tube: ASTM A269, Alloy Type 302, 304, or 304L. - C. Stainless Steel Tubing: ASTM A269, Grade 304 or 304L, seamless or welded. - D. Stainless Steel Pipe: ASTM A312; Grade TP 304 or TP 304L. - E. Steel Sheet: ASTM A653, zinc-coated (galvanized) coating designation G90. - F. Glass: - 1. ASTM C1036, Type 1, Class 1, Quality q2, for mirrors, and for mirror doors in medicine cabinets. - 2. ASTM C1036, Type 1 Class 1 Quality q3, for shelves in medicine cabinets. - 3. ASTM C1048, Kind FT, Condition A, Type 1, Class 1 (use in Mental Health and Behavior Nursing Unit Psychiatric Patient Areas and Security Examination Rooms where mirrors and glass are specified). - G. Foam Rubber: ASTM D3453, Grade BD, Type 2. - H. Vinyl Covering: ASTM D3690, Vinyl coated fabric, Class A. - I. Plywood: PS1, Grade CD. # 2.2 FASTENERS A. Exposed Fasteners: Stainless steel or chromium plated brass, finish to match adjacent surface. - B. Concealed Fasteners: Steel, hot-dip galvanized (except in high moisture areas such as showers or bath tubs use stainless steel). - C. Toggle Bolts: For use in hollow masonry or frame construction. - D. Hex bolts: For through bolting on thin panels. - E. Expansion Shields: Lead or plastic as recommended by accessory manufacturer for component and substrate for use in solid masonry or concrete. # F. Screws: - 1. ASME B18.6.4. - 2. Fed Spec. FF-S-107, Stainless steel Type A. - G. Adhesive: As recommended by manufacturer for products to be joined. #### 2.3 FINISH - A. In accordance with NAAMM AMP 500 series. - B. Anodized Aluminum: - 1. AA-C22 A41 Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick. - 2. AA-C22A44 Chemically etched medium matte with electrolytically deposited metallic compound, integrally colored coating Class I Architectural, 0.7-mil thick finish. Dyes will not be accepted. - C. AA-M32 Mechanical finish, medium satin. - 1. Chromium Plating: ASTM B456, satin or bright as specified, Service Condition No. SC2. - 2. Stainless Steel: NAAMM AMP 503, finish number 4. - 3. Ferrous Metal: - a. Shop Prime: Clean, pretreat and apply one coat of primer and bake. - b. Finish: Over primer apply two coats of alkyd or phenolic resin enamel, and bake. - 4. Nylon Coated Steel: Nylon coating powder formulated for a fluidized bonding process to steel to provide a hard smooth, medium gloss finish, not less than 0.3 mm (0.012-inch) thick, rated as self-extinguishing when tested in accordance with ASTM D635. ## 2.4 FABRICATION - GENERAL - A. Welding, AWS D10.4. - B. Grind dress, and finish welded joints to match finish of adjacent surface. - C. Form exposed surfaces from one sheet of stock, free of joints. - D. Provide steel anchors and components required for secure installation. - E. Form flat surfaces without distortion. Keep exposed surfaces free from scratches and dents. Reinforce doors to prevent warp or twist. - F. Isolate aluminum from dissimilar metals and from contact with building materials as required to prevent electrolysis and corrosion. - G. Hot-dip galvanized steel, except stainless steel, anchors and fastening devices. - H. Shop assemble accessories and package with all components, anchors, fittings, fasteners and keys. - I. Key items alike. - J. Provide templates and rough-in measurements as required. - K. Round and deburr edges of sheets to remove sharp edges. #### 2.5 PAPER TOWEL DISPENSERS - A. Surface mounted type. - B. Dispensing capacity for 400 sheets of C-fold or 525 Multifold paper towels. - C. Fabricate of stainless steel. - D. Provide door with continuous hinge at bottom, and either spring tension cam lock or tumbler lock, keyed alike, at top and a refill sight slot in front. #### 2.6 TOILET TISSUE DISPENSERS - A. Double roll surface mounted type. - B. Mount on continuous backplate. - C. Removable spindle ABS plastic or chrome plated plastic. - D. Wood rollers are not acceptable. #### 2.7 GRAB BARS - A. Fed. Spec WW-P-541/8B, Type IV, bars, surface mounted, Class 2, grab bars and ASTM F446. - B. Fabricate of either stainless steel or nylon coated steel, except use only one type throughout the project: - 1. Stainless steel: Grab bars, flanges, mounting plates, supports, screws, bolts, and exposed nuts and washers. - C. Concealed mount. - D. Bars: - 1. Fabricate from 38 mm (1-1/2 inch) outside diameter tubing. - a. Stainless steel, minimum 1.2 mm (0.0478 inch) thick. - b. Nylon coated bars, minimum 1.5 mm (0.0598 inch) thick. - 2. Fabricate in one continuous piece with ends turned toward walls, except swing up and where grab bars are shown continuous around three sides of showers, bars may be fabricated in two sections, with concealed slip joint between. 3. Continuous weld intermediate support to the grab bar. #### E. Flange for Concealed Mounting: - 1. Minimum of 2.65 mm (0.1046 inch) thick, approximately 75 mm (3 inch) diameter by 13 mm (1/2 inch) deep, with provisions for not less than three set screws for securing flange to back plate. - 2. Insert grab bar through center of the flange and continuously weld perimeter of grab bar flush to back side of flange. #### F. Back Plates: - 1. Minimum 2.65 mm (0.1046 inch) thick metal. - 2. Fabricate in one piece, approximately 6 mm (1/4 inch) deep, with diameter sized to fit flange. Provide slotted holes to accommodate anchor bolts. - 3. Furnish spreaders, through bolt fasteners, and cap nuts, where grab bars are mounted on metal partitions. #### 2.8 SHOWER CURTAIN RODS - A. Stainless steel tubing, ASTM A569, minimum 1.27 mm (0.050 inch) wall thickness, 32 mm (1 1/4 inch) outside diameter. - B. Flanges, stainless steel rings, 66 mm (2 5/8 inch) minimum outside diameter, with 2 holes opposite each other for 6 mm (1/4 inch) stainless steel fastening bolts. Provide a set screw within the curvature of each flange for securing the rod. # 2.9 CLOTHES HOOKS-ROBE OR COAT - A. Fabricate hook units either of chromium plated brass with a satin finish, or stainless steel, using 6 mm (1/4 inch) minimum thick stock, with edges and corners rounded smooth to the thickness of the metal, or 3 mm (1/8 inch) minimum radius. - B. Fabricate each unit as a double hook on a
single shaft, integral with or permanently fastened to the wall flange, provided with concealed fastenings. # 2.10 METAL FRAMED MIRRORS - A. Fed. Spec. A-A-3002 metal frame; stainless steel, type 302 or 304. - B. Mirror Glass: - 1. Minimum 6 mm (1/4 inch) thick. - 2. Set mirror in a protective vinyl glazing tape. - Use tempered glass for mirrors in Mental Health and Behavioral Nursing units. #### C. Frames: - 1. Channel or angle shaped section with face of frame not less than 9 mm (3/8 inch) wide. Fabricate with square corners. - 2. Use either 0.9 mm (0.0359 inch) thick stainless steel, chrome finished steel, or extruded aluminum, with clear anodized finish 0.4 mils thick. ## 3. Filler: - a. Where mirrors are mounted on walls having ceramic tile wainscots not flush with wall above, provide fillers at void between back of mirror and wall surface. - b. Fabricate fillers from same material and finish as the mirror frame, contoured to conceal the void behind the mirror at sides and top. #### D. Back Plate: - Fabricate backplate for concealed wall hanging of either zinccoated, or cadmium plated 0.9 mm (0.036 inch) thick sheet steel, die cut to fit face of mirror frame, and furnish with theft resistant concealed wall fastenings. - 2. Use set screw type theft resistant concealed fastening system for mounting mirrors. # E. Mounting Bracket: - 1. Designed to support mirror tight to wall. - 2. Designed to retain mirror with concealed set screw fastenings. ## 2.11 MOP RACKS - A. Minimum 1.0M (40 inches) long with five holders. - B. Clamps: - 1. Minimum of 1.3 mm (0.050-inch) thick stainless steel bracket retaining channel with a hard rubber serrated cam; pivot mounted to channel. - 2. Clamps to hold handles from 13 mm (1/2-inch) minimum to 32 mm (1-1/4inch) maximum diameter. # C. Support: - 1. Minimum of 1 mm (0.0375 inch) thick stainless steel hat shape channel to hold clamps away from wall as shown. - 2. Drill wall flange for 3 mm (1/8 inch) fasteners above and below clamp locations. - D. Secure clamps to support with oval head machine screws or rivets into continuous reinforcing back of clamps. E. Finish on stainless Steel: AMP 503-No. 4. ### 2.12 STAINLESS STEEL SHELVES. - A. Fabricate shelves and brackets to design shown of 1.2 mm (0.0478-inch) thick stainless steel. - B. Round and finish smooth projecting corners of shelves and edge corners of brackets. Drill brackets for 6 mm (1/4-inch) anchor bolts. - C. Screw or weld brackets to shelves. ### 2.13 SEAT COVER DISPENSERS. - A. Surface-mounted type. - B. Dispensing capacity for 250 single- or half-folded toilet seat covers. - C. Shall be 22-gauge all-welded stainless steel construction. - D. Provide concealed opening in bottom for filling. #### 2.14 FOLDING SHOWER SEAT. - A. Surface-mounted type. - B. Shall be reversible, 1/2" (13mm) thick, solid phenolic-resin core with melamine surfaces. - C. Shall be attached to wall by two 3'' diameter, 3/16'' thick, stainless steel mounting flanges. - D. Shall comply with barrier-free accessibility guidelines. - E. Shall have ability to lock in upright position when not in use. - F. Shall have strength to support a single user up to 300 lbs. (163 kg). #### PART 3 - EXECUTION # 3.1 PREPARATION - A. Before starting work notify Contracting Officer's Representative (COR) in writing of any conflicts detrimental to installation or operation of units. - B. Verify with the Contracting Officer's Representative (COR) the exact location of accessories. ## 3.2 INSTALLATION - A. Set work accurately, in alignment and where shown. Items shall be plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface. - B. Toggle bolt to steel anchorage plates in frame partitions or hollow masonry. Expansion bolt to concrete or solid masonry. - C. Install accessories in accordance with the manufacturer's printed instructions and ASTM F446. - D. Install accessories plumb and level and securely anchor to substrate. - E. Install accessories in a manner that will permit the accessory to function as designed and allow for servicing as required without hampering or hindering the performance of other devices. - F. Position and install dispensers, and other devices in countertops, clear of drawers, permitting ample clearance below countertop between devices, and ready access for maintenance as needed. - G. Align mirrors, dispensers and other accessories even and level, when installed in battery. - H. Install accessories to prevent striking by other moving, items or interference with accessibility. ### 3.3 SCHEDULE OF ACCESSORIES | ID | Description | Manufacturer | No. | Mounting
Type | Mounting Height | Remarks | |----|---|--|---------------|-----------------------------|--|-----------------------------| | 1 | 36" Long
Horizontal
Grab Bar | Bobrick | B-6806
x36 | Concealed w/
Snap Flange | 2'-10"
Centerline
A.F.F. | Stainless
Steel
(SST) | | 2 | 42" Long
Horizontal
Grab Bar | Bobrick | B-6806
x42 | Concealed w/
Snap Flange | 2'-10"
Centerline
A.F.F. | SST | | 3 | 18" Long
Vertical
Grab Bar | Bobrick | B-6806
×18 | Concealed w/
Snap Flange | 3'-3" Centerline of Bottom Flange A.F.F. | SST | | 4 | Multi-Roll
Toilet
Tissue
Dispenser | Bobrick | B-2888 | Surface-
Mounted | 2'-4" From Top
to Finished
Floor | SST | | 5 | Seat Cover
Dispenser | Bobrick | B-221 | Surface-
Mounted | 2'-6" From Top
to Finished
Floor | SST | | 6 | 2'-0" x
3'-0" Mirror | Bobrick | B-165
2436 | Surface-
Mounted | 3'-4" From Bottom of Reflected Surface to Finished Floor | SST
Channel
Frame | | 7 | Paper Towel
Dispenser | Bobrick | B-262 | Surface-
Mounted | 4'-6" From Top
to Finished
Floor | SST | | 8 | Soap
Dispenser | Owner
Furnished,
Contractor
Installed | | Surface-
Mounted | 3'-4" From
Bottom to
Finished Floor | | | 9 | Coat Hook | Bobrick | B-6717 | Concealed w/
Snap Flange | Varies 4'-0" to
5'-6" (See
Elevations) | SST
(Satin
Finish) | VA Contract Number 540-C-05003 | ID | Description | Manufacturer | No. | Mounting
Type | Mounting Height | Remarks | |----|--|--------------|---------------|-----------------------------|--|----------------------------| | 10 | Shower
Curtain Rod | Bobrick | B-6047
x36 | Surface-
Mounted | 6'-3"
Centerline
A.F.F. | SST | | 11 | Folding
Shower Seat | Bobrick | B-5181 | Surface-
Mounted | 1'-6" Top of
Seat in Down-
Position to
Finished Floor | Solid
Phenolic /
SST | | 12 | Recessed
Soap Dish | Bobrick | в-4380 | Recessed | 4'-2" From Top
of Frame to
Finished Floor | SST | | 13 | Shower Grab
Bar | Bobrick | B-58616 | Concealed w/
Snap Flange | Centerline
A.F.F. | SST
(Satin
Finish) | | 14 | Utility
Shelf | Bobrick | B-298
x36 | Surface-
Mounted | 4'-0" From top
of Shelf to
Finished Floor | SST | | 15 | Utility Shelf w/ Mop Holders and Rag Hooks | Bobrick | B-224 | Surface-
Mounted | 4'-0" From Top
of Shelf to
Finished Floor | SST | # 3.4 CLEANING After installation, clean as recommended by the manufacturer and protect from damage until completion of the project. - - - E N D - - - # SECTION 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION # PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 21. - B. Definitions: - 1. Exposed: Piping and equipment exposed to view in finished rooms. - Option or optional: Contractor's choice of an alternate material or method. #### 1.2 RELATED WORK - A. Section 01 00 00, GENERAL REQUIREMENTS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - C. Concrete and Grout: Section 03 30 00, CAST-IN-PLACE CONCRETE. - D. Building Components for Attachment of Hangers: // Section 05 31 00, STEEL DECKING. // //Section 05 36 00, COMPOSITE METAL DECKING. // - E. Section 07 84 00, FIRESTOPPING. - F. Flashing for Wall and Roof Penetrations: Section 07 60 00, FLASHING AND SHEET METAL. - G. Section 07 92 00, JOINT SEALANTS. - H. Section 09 91 00, PAINTING. # 1.3 QUALITY ASSURANCE - A. Products Criteria: - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions. - 2. Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site. - 3. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer. - 4. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product. - 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment. - 6. Asbestos products or equipment or materials containing asbestos shall not be used. - B. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material. - C.
Extended Guarantee Period Services: - 1. Replacement Parts: The contractor shall be equipped with all replacement parts of all equipment and systems to be serviced and the manufacturer's standard service and repair procedures. All replacement parts shall be brand new and of current design. The replacement parts shall be O.E.M. items. Obsolete or refurbished parts are unacceptable. "Approved Equal" parts must have prior approval of the Contracting Officer. Contractor shall furnish evidence of guaranteed supply of parts for the life of the system. - 2. Service Supplies: The services shall include, without any additional cost to the government, all replacement parts, special tools and equipment, and consumable materials, that is, lubrication oil, grease, and cleaning materials, as required. The requirement of UL listing, where applicable, shall not be voided by any replacement parts, components, software, or modifications provided by the contractor. - 3. Scheduled and Emergency Call Service: The service shall include a scheduled monthly visit to perform systematic examination of equipment and/or systems and a 7 day, 24 hours call back service for emergency service. The emergency service is defined as a situation created by a breakdown or malfunction of any equipment or system warranting urgent attention. A qualified service representative shall respond to the VA request for emergency service within two hours and assess the problem either by telephone or remote diagnostic capability. If the emergency situation cannot be rectified by the VA personnel, on site emergency service shall be provided by sending a qualified service representative within 24 hours. For the rural locations of the VA medical centers, situated over 200 miles from the contractor's established service depot, the maximum response time of 48 hours shall be acceptable. The emergency service shall be limited to adjustments and repairs specifically required to protect the - safety of the equipment for which the emergency service was required to be performed. - 4. Licensing: The contractor shall be licensed to perform the contracted services. The contractor shall furnish details of all applicable local and state licensing requirements to VA as a part of the qualification requirements. The licenses shall be current, valid through the term of the contract and in the name of the contractor. - 5. Documentation Requirements: The contractor shall maintain a separate log for each item of equipment and each system covered under the extended guarantee period service contract with the VA Medical Center (VAMC) Engineering Service. The log shall list dates and times of all scheduled and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency, steps taken to rectify the situations, and specific recommendations to avoid such conditions in the future. - 6. Reports: The contractor shall provide a quarterly report for the first year and twice a year for the remainder of the guarantee period for all equipment and systems serviced under the extended guarantee period contract. The report shall clearly and concisely describe the services rendered, parts replaced, and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance. - 7. Quality Program: The contractor shall provide a description of the quality management and control program. The description shall include a tangible proof the existence of such program, names of at least three customers who have participated in the program, and specific information showing the applicability of program to the project. - 8. Training: During each scheduled service visit, the contractor shall actively involve the VAMC maintenance personnel in performing scheduled service and associated activities. The practical training during the scheduled service visits shall include parting oral and written instructions, for each specific task of the servicing contract, to the VAMC maintenance personnel who shall operate the hardware and software in accordance with the intent of the design and under direct supervision of the service contractor's qualified service technician. At the end of the first year of the service contract, the contractor shall obtain a certificate from the VAMC Engineering Service confirming completion of training to the authorized VA representatives. - 9. Classroom Training: Provide list and costs of available classroom training courses offered by contractor or O.E.M. // - E. Supports for sprinkler piping shall be in conformance with NFPA 13. - F. Supports for standpipe shall be in conformance with NFPA 14. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section. - 1. Equipment and materials identification. - 2. Fire-stopping materials. - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers. - 4. Wall, floor, and ceiling plates. - C. Coordination Drawings: // Provide detailed layout drawings of all piping systems. // Provide details of the following. - 1. Mechanical equipment rooms. - 2. Hangers, inserts, supports, and bracing. - 3. Pipe sleeves. - 4. Equipment penetrations of floors, walls, ceilings, or roofs. - D. Maintenance Data and Operating Instructions: - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment. #### 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM): A36/A36M-2001..........Carbon Structural Steel | A575-96 | .Steel Bars, | Carbon, | Merchant | Quality, | M-Grades | R | | |---------|--------------|---------|----------|----------|----------|---|--| | | (2002) | | | | | | | E84-2003......Standard Test Method for Burning Characteristics of Building Materials E119-2000......Standard Test Method for Fire Tests of Building Construction and Materials | C. National Fire Protection Association (NFPA | .): | |---|-----| |---|-----| 90A-96.....Installation of Air Conditioning and Ventilating Systems 101-97.....Life Safety Code #### PART 2 - PRODUCTS ## 2.1 EQUIPMENT AND MATERIALS IDENTIFICATION - //A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING. // - //A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING. // - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc. #### C. Valve Tags and Lists: - 1. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook. - 3. Provide detailed plan indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling. ## 2.2 FIRESTOPPING Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. #### 2.3 GALVANIZED REPAIR COMPOUND Mil. Spec. DOD-P-21035B, paint form. ## 2.4 PIPE PENETRATIONS A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays. - B. To prevent accidental liquid spills from passing to a lower level, provide the following: - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint. - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening. - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration. - C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of Resident Engineer. - D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below. - E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve. - F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam
flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate. - G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate. - H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction. - I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases. - J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. ## 2.5 WALL, FLOOR AND CEILING PLATES A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to - pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection. - B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe. - C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified. #### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified. - B. Protection and Cleaning: - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced. - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment. - C. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. - D. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work. - E. Work in Existing Building: - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 - 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s). - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility. - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation. - F. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. - G. Inaccessible Equipment: - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government. - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork. #### 3.2 OPERATING AND PERFORMANCE TESTS - A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer. - B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government. - C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. # 3.3 INSTRUCTIONS TO VA PERSONNEL Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS. - - - E N D - - - #### **SECTION 21 08 00** #### COMMISSIONING OF FIRE SUPPRESSION SYSTEMS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 21. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. #### 1.3 SUMMARY A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. #### 1.4 DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. ## 1.5 SUBMITTALS - A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. ## PART 2 - PRODUCTS (NOT USED) #### PART 3- EXECUTION #### 3.1 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. ## 3.2 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. ## 3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING: A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating
conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. ## 3.4 TRAINING OF VA PERSONNEL A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 21 Sections for additional Contractor training requirements. ---- END ---- # SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS #### PART 1 - GENERAL #### 1.1 SCOPE OF WORK - A. Design, installation and testing shall be in accordance with NFPA 13 except for specified exceptions. - B. The design and installation of a hydraulically calculated automatic wet system complete and ready for operation, // for all portions of the remodeled areas. - //D. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications. // #### 1.2 RELATED WORK - A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Section 07 84 00, FIRESTOPPING, Treatment of penetrations through rated enclosures. - C. Section 09 91 00, PAINTING. - D. Section 21 10 00, WATER-BASED FIRE-SUPPRESSION SYSTEMS, Dry sprinklers, etc. - E. Section 21 05 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION ## 1.3 QUALITY ASSURANCE - A. Installer Reliability: The installer shall possess a valid State of // (insert state in which work is being performed) // fire sprinkler // contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years. - B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL and approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. - C. Submittals: Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering. As Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. // Partial submittals will not be accepted. // Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide index referencing the appropriate specification section. Submittals shall include, but not be limited to, the following: 1. Oualifications: - a. Provide a copy of the installing contractors // fire sprinkler // and state // contractors license. - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer practicing in the field of Fire Protection Engineering. - 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to NFPA 13. Include a site plan showing the piping to the water supply test location. - 3. Manufacturers Data Sheets: - a. Provide for materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheet describes items in addition to that item being submitted, clearly identify proposed item on the sheet. - 4. Calculation Sheets: Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of NFPA 13. - 5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submittals shall include, but not be limited to, the following: - a. One complete set of reproducible as-built drawings showing the installed system with the specific interconnections between the waterflow switch or pressure switch and the fire alarm equipment. - b. Complete, simple, understandable, step-by-step, testing instructions giving recommended and required testing frequency of all equipment, methods for testing all equipment, and a complete trouble shooting manual. Provide maintenance instructions on replacing any components of the system including internal parts, periodic cleaning and adjustment of the equipment and components with information as to the address and telephone number of both the manufacturer and the local supplier of each item. - c. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. - d. Certificates shall document all parts of the installation. - e. Instruction Manual: Provide one copy of the instruction manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser. - D. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13. Recommendations in appendices shall be treated as requirements. - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section. - 2. Sprinkler Protection: To determining spacing and sizing, apply the following coverage classifications: - a. Light Hazard Occupancies: corridors, toilet rooms, and customary access areas. - b. Ordinary Hazard Group 1 Occupancies: Mechanical Equipment Rooms, and Refrigeration Service Rooms. - c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, storage areas, file storage areas for the entire area of the space up to 140 square meters (1500 square feet). - d. Request clarification from the Government for any hazard classification not identified. - 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve. - 4. Zoning: - a. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings. // ## 1.4 APPLICABLE PUIBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. National Fire Protection Association (NFPA): - C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory 2001 - D. Factory Mutual Engineering Corporation (FM): Approval Guide 2001 - E. Uniform Building Code 1997 - F. Foundation for Cross-Connection Control and Hydraulic Research-2005 #### PART 2 PRODUCTS #### 2.1 PIPING & FITTINGS A. Sprinkler systems in accordance with NFPA 13. #### 2.2 VALVES - A. Valves in accordance with NFPA 13. - B. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves. - C. The wet system control valve shall be a listed indicating type valve. Control valve shall be UL Listed and FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI. (No Substitutions Allowed). #### 2.3 SPRINKLERS - A. All sprinklers shall be FM approved. Maximum break away strength shall be certified by the manufacturer to be no more than 39 kPa (85 pounds). Provide quick response sprinklers in all areas, except where specifically prohibited by their listing or approval. - 1. Cold storage rooms: Standard response dry pendant sprinklers. - B. Temperature Ratings: In accordance with NFPA 13 ## 2.4 SPRINKLER CABINET Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each system. Locate adjacent to the riser. Sprinkler heads shall be installed in center of tile or center to center. #### 2.5 PIPE HANGERS AND SUPPORTS Supports, hangers, etc., of an approved pattern placement to conform to NFPA 13. System piping shall be substantially supported to the building structure. The installation of hangers and supports shall adhere to the requirements set forth in NFPA 13, Standard for Installation of Sprinkler Systems. Materials used in the installation or construction of hangers and supports shall be listed and approved for such application. Hangers or supports not specifically listed for service shall be designed and bear the seal of a professional engineer. // ## 2.6 WALL, FLOOR AND CEILING PLATES Provide chrome plated steel escutcheon plates for exposed piping passing though walls, floors or ceilings. #### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Installation shall be accomplished by the licensed contractor. Provide a qualified
technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system. - B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Install concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. Locate piping in stairways as near to the ceiling as possible to prevent tampering by unauthorized personnel, and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). To prevent an obstruction to egress, provide piping clearances in accordance with NFPA 101. - C. Welding: Conform to the requirements and recommendations of NFPA 13. - D. Drains: Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. - E. Inspector's Test Connection: Install and supply in conformance with NFPA 13, locate in a secured area, and discharge to the exterior of the building. - F. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING. - G. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government. H. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve in occupied spaces. Request in writing at least one week prior to the planned interruption. // #### 3.2 INSPECTION AND TEST - A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Technical Representative (COTR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests. - B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COTR/Resident Engineer to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test. ## 3.3 INSTRUCTIONS Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COTR/Resident Engineer. - - - E N D - - - # SECTION 11 78 00 MORTUARY EQUIPMENT #### PART 1 - GENERAL #### 1.1 DESCRIPTION This section specifies morgue equipment including // autopsy tables // and // autopsy sinks //. #### 1.2 RELATED WORK - A. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION and Section 22 13 00, FACILITY SANITARY SEWERAGE. - B. Electrical Connections: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - C. Electrical Devices: Section 26 27 26, WIRING DEVICES. ## 1.3 QUALITY CONTROL - A. Manufacturer Qualifications: Manufacturer regularly and presently manufactures morgue equipment. - B. Electrical Components and Devices: UL listed and labeled for intended use. #### 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. #### 1.5 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: Include illustrations and descriptions of morgue equipment. - C. Shop Drawings: Show details of installation, coordination with mechanical and electrical work, anchorage, and other work required for complete installation. - D. Field Test Reports: Indicate dates and times of tests and certify test results. - E. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS. ## PART 2 - PRODUCTS ## 2.1 MORGUE EQUIPMENT, GENERAL - A. Factory install service fixtures and electrical devices in locations shown on drawings. - B. Service Fixtures, General: Heavy-grade designed for mortuary use and complying with relevant requirements in SEFA 7. - C. Water Service Fixtures: With integral vacuum breaker and as follows: - 1. Female 10 mm (3/8 inch) threaded outlet for attachment of filter pumps, hose connectors, antihose nozzle or antisplash spout ends. - 2. Equip with goosenecks with minimum clearance of 191 mm (7-1/2 inches) between threaded outlet and tabletop. Bend gooseneck 180 degrees to direct water flow vertically into sinks. Attach gooseneck to base with adapter-type connection, which will permit field conversion of swing-type to fixed-type gooseneck and fixed-type to swing-type gooseneck. - 3. Unless otherwise indicated, provide water fixtures for manual operation with wrist-blade handles. - D. Waste Disposal Unit: // 373-W (1/2-hp) // 560-W (3/4-hp) // heavy-duty commercial disposer, with vacuum breaker, standpipe, solenoid valve, waterproof control switch, starter, overload protection, trap with cleanout, and necessary fittings for a complete functional unit. - E. Electrical Outlets: Hospital grade, weatherproof duplex electrical, 110 V, 60 cycle, single phase. - F. Down-Draft Exhaust: Double-cone assembly installed in autopsy tabletop; exhaust duct with filter extending from base of autopsy table through floor and extending to roof of building and attached to exhaust fan. ## 2.2 AUTOPSY SINKS - A. Description: Fixed stainless-steel sinks with integral splash and drainboards. - B. Supports: - //1. Support gussets, backing plate, or in-wall carrier designed to support sink plus 91 kg (200 lb) when applied to front rim of sink.// - //2. Stainless-steel legs, gusset, cross rails, and adjustable feet.// - C. Drainboards: Pitched to sink with removable, perforated stainless-steel specimen/dissecting trays. - D. Acoustical Coating: Applied on underside of sink units. E. Equip sinks with hot- and cold-water mixing faucet with wrist blades, swivel gooseneck spout, vacuum breaker, and // knee-controlled // handlever-controlled // drain valves with overflow. #### 2.3 AUTOPSY TABLES A. To be furnished by the Owner - Contractor to connect plumbing systems. #### PART 3 - EXECUTION #### 3.1 INSTALLATION Install morgue equipment according to manufacturer's written instructions and relevant requirements in SEFA 2. #### 3.2 TESTS - A. Field test installed units after service systems are pressurized for proper operation. - 1. Operate each component of equipment. During and after testing, there shall be no evidence of leaks, electrical malfunction, or other symptom of failure. - For units that fail testing, make adjustments and corrections to installation, or replace units, and repeat tests until units operate properly. ## 3.3 PROTECTING AND CLEANING - A. Protect equipment from dirt, water, and chemical or mechanical injury during the remainder of the construction period. - B. At the completion of work, clean equipment as required to produce ready-for-use condition. ## 3.4 INSTRUCTIONS Instruct personnel and transmit operating instructions in accordance with requirements in Section 01 00 00, GENERAL REQUIREMENTS. - - - E N D - - - # SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section shall apply to all sections of Division 22. - B. Definitions: - 1. Exposed: Piping and equipment exposed to view in finished rooms. - Option or optional: Contractor's choice of an alternate material or method. #### 1.2 RELATED WORK - A. Section 01 00 00, GENERAL REQUIREMENTS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - C. Section 07 84 00, FIRESTOPPING. - D. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations. - E. Section 07 92 00, JOINT SEALANTS. - F. Section 09 91 00, PAINTING. - G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION. - H. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS ## 1.3 QUALITY ASSURANCE - A. Products Criteria: - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. - 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly. - 3. The products and
execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Resident Engineer (RE)/Contracting Officers Technical Representative (COTR). - 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer. - 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product. - 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment. - 7. Asbestos products or equipment or materials containing asbestos shall not be used. - B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements: - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Oualifications". - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping". - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current. - 4. All welds shall be stamped according to the provisions of the American Welding Society. - C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material. - D. Execution (Installation, Construction) Quality: - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the RE/COTR for resolution. Written hard copies or computer files of manufacturer's installation - instructions shall be provided to the RE/COTR at least two weeks prior to commencing installation of any item. - 2. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved. - E. Guaranty: Warranty of Construction, FAR clause 52.246-21. - F. Plumbing Systems: IPC, International Plumbing Code. #### 1.4 SUBMITTALS - A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMNON WORK RESULTS FOR PLUMBING", with applicable paragraph identification. - C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements. - D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract. - E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation. - F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references. - G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section. - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment. - 2. Equipment and materials identification. - 3. Fire stopping materials. - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers. - 5. Wall, floor, and ceiling plates. - H. Coordination Drawings: In accordance with GENERAL CONDITIONS, Article, SUBCONTRACTS AND WORK COORDINATION. Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided. - 1. Hangers, inserts, supports, and bracing. - 2. Pipe sleeves. - 3. Equipment penetrations of floors, walls, ceilings, or roofs. - I. Maintenance Data and Operating Instructions: - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. - Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. - 3. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets. ## 1.5 DELIVERY, STORAGE AND HANDLING - A. Protection of Equipment: - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage. - Damaged equipment shall be replaced with an identical unit as determined and directed by the RE/COTR. Such replacement shall be at no additional cost to the Government. - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation. - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work. - B. Cleanliness of Piping and Equipment Systems: - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed. - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems. - 3. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC), latest edition. All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance. - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems. ## 1.6 APPLICABLE PUBLICATIONS - A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): - SEC IX-2007.....Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications. - C. American Society for Testing and Materials (ASTM): - A36/A36M-2008......Standard Specification for Carbon Structural Steel - A575-96 (R 2007)......Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002) - E84-2005......Standard Test Method for Surface Burning Characteristics of Building Materials - E119-2008a.....Standard Test Methods for Fire Tests of Building Construction and Materials - D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: - SP-58-02.....Pipe Hangers and Supports-Materials, Design and Manufacture - SP 69-2003 (R 2004).....Pipe Hangers and Supports-Selection and Application - E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007...Motors and Generators - C. International Code Council, (ICC): ``` IBC-06, (R 2007)......International Building Code IPC-06, (R 2007)......International Plumbing Code ``` #### PART 2 - PRODUCTS ## 2.1 FACTORY-ASSEMBLED PRODUCTS - A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements. - B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit. - 1. All components of an assembled unit need not be products of same manufacturer. - 2. Constituent parts that are alike shall be products of a single manufacturer. - 3. Components
shall be compatible with each other and with the total assembly for intended service. - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly. - C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment. - D. Major items of equipment, which serve the same function, shall be the same make and model # 2.2 COMPATIBILITY OF RELATED EQUIPMENT A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements. #### 2.3 SAFETY GUARDS A. All Equipment shall have moving parts protected from personal injury. #### 2.4 EQUIPMENT AND MATERIALS IDENTIFICATION - A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING. - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified. #### C. Valve Tags and Lists: - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included). - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage, 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall. - 4. A detailed plan indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling. ## 2.5 FIRE STOPPING A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for pipe insulation. ## 2.6 GALVANIZED REPAIR COMPOUND A. Mil. Spec. DOD-P-21035B, paint. ## 2.7 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS - A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC), latest edition. Submittals based on the International Building Code (IBC), latest edition, SECTION 13 05 41 requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in a state where the project is located. - B. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting. - C. For Attachment to Concrete Construction: - 1. Concrete insert: Type 18, MSS SP-58. - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition. - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (4 inches) thick when approved by the Resident Engineer for each job condition. - D. For Attachment to Steel Construction: MSS SP-58. - 1. Welded attachment: Type 22. - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8-inch) outside diameter. - E. Attachment to Metal Pan or Deck: As required for materials specified in // Section 05 31 00, STEEL DECKING. // Section 05 36 00, COMPOSITE METAL DECKING.// - F. For Attachment to Wood Construction: Wood screws or lag bolts. - G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable. - H. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping. - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds). - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger. - I. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping. - 1. General Types (MSS SP-58): - a. Standard clevis hanger: Type 1; provide locknut. - b. Riser clamps: Type 8. - c. Wall brackets: Types 31, 32 or 33. - d. Roller supports: Type 41, 43, 44 and 46. - e. Saddle support: Type 36, 37 or 38. - f. Turnbuckle: Types 13 or 15. - g. U-bolt clamp: Type 24. - h. Copper Tube: - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis. - 2) For vertical runs use epoxy painted or plastic coated riser clamps. - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps. - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube. - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. //Spring Supports (Expansion and contraction of vertical piping): - 1) Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator. - 2) Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator. // - j. Spring hangers are required on all plumbing system pumps one horsepower and greater. - 2. Plumbing Piping (Other Than General Types): - a. Horizontal piping: Type 1, 5, 7, 9, and 10. - b. Chrome plated piping: Chrome plated supports. - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions. - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum. - J. Pre-insulated Calcium Silicate Shields: - 1. Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal. - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection. - 3. Shield thickness shall match the pipe insulation. - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with. - a. Shields for supporting cold water shall have insulation that extends a minimum of one inch past the sheet metal. - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket. - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces. ## 2.8 PIPE PENETRATIONS A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays. - B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration. - C. To prevent accidental liquid spills from passing to a lower level, provide the following: - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint. - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening. - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration. - C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer. - D. Sheet metal, plastic, or
moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below. - E. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve. - F. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel Sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate. - G. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate. - H. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases. - I. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. #### 2.9 TOOLS AND LUBRICANTS - A. Furnish, and turn over to the Resident Engineer, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished. - B. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the Resident Engineer. #### 2.10 WALL, FLOOR AND CEILING PLATES - A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection. - B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3 inch) pipe, 0.89 mm (0.035-inch) for larger pipe. - C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified. ## 2.11 ASBESTOS Materials containing asbestos are not permitted. ## PART 3 - EXECUTION #### 3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING - A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. - Manufacturer's published recommendations shall be followed for installation methods not otherwise specified. - B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced. - C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation. - D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations. ## E. Cutting Holes: - Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by RE/COTR where working area space is limited. - 2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by RE/COTR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to RE/COTR for approval. - 3. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane. - F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided. - G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided. ## H. Protection and Cleaning: - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced. - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or - mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment. - I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work. - J. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70. - K. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and section 23 09 23 DIRECT DIGITAL CONTROLS FOR HVAC - L. Work in Existing Building: - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s). - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility. - M. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty. - N. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. - O. Inaccessible Equipment: - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government. 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork. # 3.2 TEMPORARY PIPING AND EQUIPMENT - A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities. - B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 shall apply. - C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Necessary blind flanges and caps shall be provided to seal open piping remaining in service. #### 3.3 RIGGING - A. Openings in building structures shall be planned to accommodate design scheme. - B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building. - C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service. - D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to
structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. - E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility. - F. Rigging plan and methods shall be referred to ${\tt RE/COTR}$ for evaluation prior to actual work. ## 3.4 PIPE AND EQUIPMENT SUPPORTS - A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the Resident Engineer. - B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced. - C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided. - D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications. ### E. Overhead Supports: - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead. - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping. - 3. Tubing and capillary systems shall be supported in channel troughs. ### F. Floor Supports: - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure. - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting. - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment. #### 3.5 PLUMBING SYSTEMS DEMOLITION - A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the RE/COTR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant. - B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations. - C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled. - D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to RE/COTR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. #### 3.6 CLEANING AND PAINTING - A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING. - B. In addition, the following special conditions apply: - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats. - 2. The following Material And Equipment shall NOT be painted:: - a. Copper, brass, aluminum, stainless steel and bronze surfaces. - b. Valve stems and rotating shafts. - c. Pressure gages and thermometers. - d. Glass. - e. Name plates. - 3. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. - 4. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. # 3.7 IDENTIFICATION SIGNS - A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws. - B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment. - C. Pipe Identification: Refer to Section 09 91 00, PAINTING. ## 3.8 STARTUP AND TEMPORARY OPERATION A. Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT. #### 3.9 OPERATING AND PERFORMANCE TESTS - A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the Resident Engineer. - B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government. - C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work. # 3.10 OPERATION AND MAINTENANCE MANUALS - A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to RE/COTR not less than 30 days prior to completion of a phase or final inspection. - B. All new and temporary equipment and all elements of each assembly shall be included. - C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included. - D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual. - E. Emergency procedures. # 3.11 INSTRUCTIONS TO VA PERSONNEL Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS. - - - E N D - - - # SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING #### PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section describes the requirements for general-duty valves for domestic water and sewer systems. # 1.2 RELATED WORK A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and
Data: - 1. Valves. - 2. Backflow Preventers. - 3. Pressure Reducing Valves. - 4. All items listed in Part 2 Products. ### 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM):A536-84(R 2004) Standard Specification for Ductile Iron Castings - C. American Society of Sanitary Engineering (ASSE) - ASSE 1003-01 (R 2003)...Performance Requirements for Water Pressure Reducing Valves - ASSE 1012-02.....Backflow Preventer with Intermediate Atmospheric Vent - ASSE 1013-05......Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers - D. International Code Council (ICC) - IPC-06 (R 2007).....International Plumbing Code - E. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): - SP-25-98......Standard Marking System for Valves, Fittings, Flanges and UnionsSP-67-02a (R 2004) Butterfly Valve of the Single flange Type (Lug Wafer) | SP-70-06Cast Iron Gate Valves, Flanged and Threaded | |--| | Ends. | | SP-72-99Ball Valves With Flanged or Butt Welding For | | General Purpose | | SP-80-03Bronze Gate, Globe, Angle and Check Valves. | | SP-110-96Ball Valve Threaded, Socket Welding, Solder | | Joint, Grooved and Flared Ends | # 1.5 DELIVERY, STORAGE, AND HANDLING - A. Valves shall be prepared for shipping as follows: - 1. Protect internal parts against rust and corrosion. - 2. Protect threads, flange faces, grooves, and weld ends. - 3. Set angle, gate, and globe valves closed to prevent rattling. - 4. Set ball and plug valves open to minimize exposure of functional surfaces - 5. Set butterfly valves closed or slightly open. - 6. Block check valves in either closed or open position. - B. Valves shall be prepared for storage as follows: - 1. Maintain valve end protection. - 2. Store valves indoors and maintain at higher than ambient dew point temperature. # PART 2 - PRODUCTS # 2.1 VALVES - A. Asbestos packing and gaskets are prohibited. - B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted. - C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied. - D. Ball valves, pressure regulating valves, gate valves, globe valves, and plug valves used to supply potable water shall meet the requirements of NSF 61. - E. Shut-off: - 1. Cold, Hot and Re-circulating Hot Water: - a. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-72, SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4140 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be solder, # F. Balancing: 1. Hot Water Re-circulating, 80 mm or DN80 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (%" NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings. #### G. Check: - 1. Check valves less than 80 mm or DN80 (3 inches) and smaller) shall be class 125, bronze swing check valves with non metallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B 62, solder joints, and PTFE or TFE disc. - a. Check valves shall be class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A 126, bolted bonnet, flanged ends, bronze trim. #### 2.2 BACKFLOW PREVENTERS - A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be ASSE 1013 listed and certified. - B. Reduced pressure backflow preventers shall be installed in the following applications. - 1. Water make up to heating systems, cooling tower, chilled water system, generators, and similar equipment consuming water. - 2. Atmospheric Vacuum Breaker: ASSE 1001 - a. Hose bibs and sinks w/threaded outlets. - b. Disposers. - c. Autopsy, on each hot and cold water outlet at each table or sink. - C. The atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be either cast bronze. All internal polymers shall be NSF listed. The seat disc elastomer shall be silicone. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. ## PART 3 - EXECUTION # 3.1 EXAMINATION - A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling. - B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations. - C. Threads on valve and mating pipe shall be examined for form and cleanliness. - D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage. - E. Do not attempt to repair defective valves; replace with new valves. # 3.2 VALVE INSTALLATION - A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown. - B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings. - C. Valves shall be installed in horizontal piping with stem at or above center of pipe - D. Valves shall be installed in a position to allow full stem movement. - E. Check valves shall be installed for proper direction of flow and as - 1. Swing Check Valves: In horizontal position with hinge pin level. # 3.3 ADJUSTING A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves shall be replaced if persistent leaking occurs. - - E N D - - - # SECTION 22 07 11 HVAC, PLUMBING, AND BOILER PLANT INSULATION # PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Field applied insulation for thermal efficiency and condensation control for - 1. Plumbing piping and equipment. - 2. Re-insulation of plumbing piping and equipment after asbestos abatement and at tie-ins to existing pipe. ## B. Definitions - 1. ASJ: All service jacket, white finish facing or jacket. - 2. Cold: Equipment or piping handling media at design temperature of 16 degrees C (60 degrees F) or below. - 3. Concealed: Piping above ceilings and in chases, //interstitial space, // and pipe spaces. - 4. Exposed: Piping and equipment exposed to view in finished areas including mechanical rooms or crawl spaces. Shafts, chases, //interstitial spaces, // unfinished attics, crawl spaces and pipe basements are not considered finished areas. - 5. FSK: Foil-scrim-kraft facing. - 6. Hot: Plumbing equipment or piping handling media above 41 degrees C (105 degrees F). - 7. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot). - 8. Thermal conductance: Heat flow rate through materials. - a. Flat surface: Watt per square meter (BTU per hour per square foot). - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot). - 9. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference). - 10. R: Pump recirculation. - 11. CW: Cold water. - 12. HW: Hot water. # 1.2 RELATED WORK A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant. - B. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General plumbing requirements and items, which are common to more than one section of Division 22. - C. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING and Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping. #### 1.3 QUALITY ASSURANCE A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. #### B. Criteria: - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows: - **4.3.3.1** Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, and
supplementary materials used in piping systems, unless otherwise provided for in 4.3.3.1.2 or 4.3.3.1.3, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials. - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.) - 4.3.3.3 Pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. - 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F). - 2. Test methods: ASTM E84, UL 723, or NFPA 255. - 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made. - 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state. - C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material. #### 1.4 SUBMITTALS A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. ## B. Shop Drawings: - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications. - a. Insulation materials: Specify each type used and state surface burning characteristics. - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment. - c. Insulation accessory materials: Each type used. - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation. - e. Make reference to applicable specification paragraph numbers for coordination. # C. Samples: - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types. - 2. Each type of facing and jacket: Minimum size 100 mm (4 inches square). - 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic. # 1.5 STORAGE AND HANDLING OF MATERIAL Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements. ## 1.6 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. - B. Federal Specifications (Fed. Spec.): L-P-535E (2)-91.......Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride Vinyl Acetate), Rigid. C. Military Specifications (Mil. Spec.): $\label{eq:mil-A-3316C} \mbox{MIL-A-3316C (2)-90.....Adhesive, Fire-Resistant, Thermal Insulation} \\ \mbox{MIL-A-24179A (1)-87.....Adhesive, Flexible Unicellular-Plastic} \\$ Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87......Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass - D. American Society for Testing and Materials (ASTM): - A167-99......Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip - B209-04......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate - C411-97......Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation - C449-00.....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement - C533-04......Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation - C534-05......Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form - C547-06......Standard Specification for Mineral Fiber pipe Insulation - C552-03......Standard Specification for Cellular Glass Thermal Insulation | | C553-02 | .Standard Specification for Mineral Fiber | |----|-------------------------|--| | | | Blanket Thermal Insulation for Commercial and | | | | Industrial Applications | | | C585-90 | .Standard Practice for Inner and Outer Diameters | | | | of Rigid Thermal Insulation for Nominal Sizes | | | | of Pipe and Tubing (NPS System) R (1998) | | | C612-04 | .Standard Specification for Mineral Fiber Block | | | | and Board Thermal Insulation | | | C1126-04 | .Standard Specification for Faced or Unfaced | | | | Rigid Cellular Phenolic Thermal Insulation | | | C1136-06 | .Standard Specification for Flexible, Low | | | | Permeance Vapor Retarders for Thermal | | | | Insulation | | | D1668-97a (2006) | .Standard Specification for Glass Fabrics (Woven | | | | and Treated) for Roofing and Waterproofing | | | E84-06 | .Standard Test Method for Surface Burning | | | | Characteristics of Building | | | | Materials | | | E119-05a | .Standard Test Method for Fire Tests of Building | | | | Construction and Materials | | | E136-04 | .Standard Test Methods for Behavior of Materials | | | | in a Vertical Tube Furnace at 750 degrees C | | | | (1380 F) | | E. | National Fire Protectio | n Association (NFPA): | | | 90A-02 | .Installation of Air Conditioning and | | | | Ventilating Systems | | | 96-04 | .Standards for Ventilation Control and Fire | | | | Protection of Commercial Cooking Operations | | | 101-06 | .Life Safety Code | | | 251-06 | .Standard methods of Tests of Fire Endurance of | | | | Building Construction Materials | | | 255-06 | .Standard Method of tests of Surface Burning | | | | Characteristics of Building Materials | | F. | Underwriters Laboratori | es, Inc (UL): | | | 723 | .UL Standard for Safety Test for Surface Burning | | | | Characteristics of Building Materials with | | | | Revision of 08/03 | G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2002.....Pipe Hangers and Supports Materials, Design, and Manufacture #### PART 2 - PRODUCTS #### 2.1 MINERAL FIBER A. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) for use at temperatures 230 degrees C (450 degrees F). ## 2.2 RIGID CELLULAR PHENOLIC FOAM A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15), for temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service jacket with polyvinyl chloride premolded fitting covering. ## 2.3 POLYISOCYANURATE CLOSED-CELL RIGID A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19), for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service jacket vapor retarder with polyvinyl chloride premolded fitting covers. # 2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL A. ASTM C177, C518, k = 0.039 Watt per meter, per degree C (0.27), at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required. #### 2.5 INSULATION FACINGS AND JACKETS - A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing. - B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 5 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 100 mm (4 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive. - C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment. - D. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service. - E. Factory composite materials may be used provided that they have been tested and certified by the manufacturer. - F. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. - G. Aluminum jacket-Rectangular
breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service. ## 2.6 PIPE COVERING PROTECTION SADDLES A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf). | Nominal Pipe Size and Accessories Material (Insert Blocks) | | | | |--|---------------------------|--|--| | Nominal Pipe Size mm (inches) | Insert Blocks mm (inches) | | | | Up through 125 (5) | 150 (6) long | | | | 150 (6) | 150 (6) long | | | | 200 (8), 250 (10), 300 (12) | 225 (9) long | | | | 350 (14), 400 (16) | 300 (12) long | | | | 450 through 600 (18 through 24) | 350 (14) long | | | B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf). # 2.7 ADHESIVE, MASTIC, CEMENT - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation. - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces. - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use. - D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use. - E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use. - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement. - G. Other: Insulation manufacturers' published recommendations. #### 2.8 MECHANICAL FASTENERS - A. Pins, anchors: Welded pins, or metal or nylon anchors with tin-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer. - B. Staples: Outward clinching monel or stainless steel. - C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy. - D. Bands: 20 mm (3/4 inch) nominal width, brass, galvanized steel, aluminum or stainless steel. # 2.9 REINFORCEMENT AND FINISHES - A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated). - B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1. - C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer. - D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel. - E. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape. #### 2.10 FIRESTOPPING MATERIAL Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING. ## 2.11 FLAME AND SMOKE Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance". # PART 3 - EXECUTION ## 3.1 GENERAL REQUIREMENTS - A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed. - B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit. - C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification. - D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches). - E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation. - F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material. - G. Plumbing work not to be insulated: - 1. Piping and valves of fire protection system. - 2. Chromium plated brass piping. - 3. Water piping in contact with earth. - 4. Piping in pipe basement serving wall hydrants. - 5. Small horizontal cold water branch runs in partitions to individual fixtures may be without insulation for maximum distance of 900 mm (3 feet). - 6. Distilled water piping. - H. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage. - I. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications. - J. Firestop Pipe insulation: - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING. - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following: - a. Pipe risers through floors - b. Pipe or duct chase walls and floors - c. Smoke partitions - d. Fire partitions # 3.2 INSULATION INSTALLATION - A. Molded Mineral Fiber Pipe and Tubing Covering: - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable. - 2. Contractor's options for fitting, flange and valve insulation: - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more. - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape. - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic. - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches). - 3. Nominal thickness in millimeters and inches specified in table below, for piping above ground: | Nominal Thickness o | E Molded Mi | neral Fiber | Insulation | on | |---|----------------------|-------------------------|---------------|-------------------------| | Nominal Pipe Size, millimeters (inches): | 25
(1) &
below | 32- 75
(1-1/4-
3) | 100-150 (4-6) | 200
(8) and
above | | a. Domestic hot water supply and return | 15 (0.5) | 20(0.75) | 25
(1.0) | 40 (1.5) | # B. Rigid Cellular Phenolic Foam: - 1. Rigid closed cell phenolic insulation may be provided for piping and equipment for temperatures up to 121 degrees C (250 degrees F). - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B - 3. Provide secure attachment facilities such as welding pins. - 4. Apply insulation with joints tightly drawn together - 5. Apply adhesives, coverings, neatly finished at fittings, and valves. - 6. Final installation shall be smooth, tight, neatly finished at all edges. 7. Minimum thickness in millimeters (inches) specified in table below, for piping above ground: | Nominal Thickness of | Rigid Clo | sed-Cell Phe | nolic Foa | m Insulat | ion | |---|----------------------|--------------------|------------------|----------------|------------------------| | Nominal Pipe Size millimeters (inches): | 25
(1) &
below | 32-75
(1 1/4-3) | 100-150
(4-6) |
200-300 (8-12) | 350
(14) &
above | | Domestic hot water supply and return. | 15
(0.5) | 15 (0.5) | 20
(0.75) | 20
(0.75) | | - 8. Condensation control insulation: Minimum 20 mm (0.75 inch) thick for all pipe sizes. - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms. - b. Plumbing piping as follows: - Body of roof and overflow drains horizontal runs and offsets (including elbows) of interior downspout piping in all areas above pipe basement. - 2) Waste piping from electric water coolers and icemakers to drainage system. - 3) Waste piping located above basement floor from ice making and film developing equipment and air handling units, from fixture (including trap) to main vertical waste pipe. - 4) MRI quench vent piping. - 5) Bedpan sanitizer atmospheric vent - 6) Reagent grade water piping. - C. Polyisocyanurate Closed-Cell Rigid Insulation: - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for piping, equipment and ductwork for temperature up to 149 degree C (300 degree F) provided insulation thickness requirement does not exceed 38 mm (1.5 inches). - 2. Install insulation, vapor retarder and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor retarder integrity. - 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications). - 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer. - 5. For cold applications, vapor retarder shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall be used to attach the vapor retarder or jacketing. No wire ties capable of penetrating the vapor retarder shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing. - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications. - 7. For cold applications, the vapor retarder on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor retarder adhesive tape. - 8. All PVC jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints). - 9. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated. - 10. Minimum thickness in millimeter (inches) specified in table below, for piping: | Nominal Thickness of Polyisocyanurate Rigid Insulation | | | | sulation | |--|---------------------|------------------------|------------------|----------------| | Nominal Pipe Size millimeters(inches): | 25(1)
&
below | 32-75
(1 1/4-
3) | 100-150
(4-6) | 200-300 (8-12) | | 1. Domestic hot water supply and return | 15
(0.5) | 20 (0.74) | 25
(1.0) | 25(1.0) | - 11. Condensation control insulation: Minimum 20 mm (0.75 inch) thick for all pipe sizes. - a. Plumbing piping as follows: - 1) Cold Water Piping. - D. Flexible Elastomeric Cellular Thermal Insulation: - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and where installed outdoors, finish with two coats of weather resistant finish as recommended by the insulation manufacturer. - 2. Pipe and tubing insulation: - a. Use proper size material. Do not stretch or strain insulation. - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape. - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only. - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in table below for piping above ground: | Nominal Thickness of Flexible | Elastomer | ic Cellul | ar Insula | tion | |--|-------------------|------------------------|------------------|--------------| | Nominal Pipe Size
millimeters (inches) | 25 (1)
& below | 32-75
(1 1/4-
3) | 100-150
(4-6) | 200 (8) | | Domestic hot water supply and return | 15
(0.50) | 20 (0.75) | 25
(1.0) | 40
(1.50) | - - - E N D - - - ## **SECTION 22 08 00** ## COMMISSIONING OF PLUMBING SYSTEMS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 22. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. ## 1.3 SUMMARY - A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REOUIREMENTS. - B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance. - C. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. # 1.4 DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. #### 1.5 COMMISSIONED SYSTEMS - A. Commissioning of a system or systems specified in this Division is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent. - B. The following Plumbing systems will be commissioned: 1. Emergency Plumbing Fixtures (Showers, eye wash stations, water tempering valves, instruments and gages) # 1.6 SUBMITTALS - A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. # PART 2 - PRODUCTS (NOT USED) #### PART 3 - EXECUTION #### 3.1 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. #### 3.2 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. #### 3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING: A. The Commissioning Process includes
Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. # 3.4 TRAINING OF VA PERSONNEL A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements. ---- END ---- # SECTION 22 11 00 FACILITY WATER DISTRIBUTION # PART 1 - GENERAL #### 1.1 DESCRIPTION Domestic water systems, including piping, equipment and all necessary accessories as designated in this section. # 1.2 RELATED WORK - A. Penetrations in rated enclosures: Section 07 84 00, FIRESTOPPING. - B. Preparation and finish painting and identification of piping systems: Section 09 91 00, PAINTING. - C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. - D. Pipe Insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION. # 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: - 1. Piping. - 2. Strainers. - 3. All items listed in Part 2 Products. # 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Federal Specifications (Fed. Spec.): | A-A-1427CSodium Hypochlorite Solution | | | |--|-------|-------------| | A-A-59617Unions, Brass or Bronze Threa | aded, | Pipe | | Connections and Solder-Joint | Tube | Connections | C. American National Standards Institute (ANSI): | American Society of Mechanical Engineers (ASME): (Copyrighted Society) | |--| | Al3.1-96Scheme for Identification of Piping Systems | | B16.3-98Malleable Iron Threaded Fittings ANSI/ASME | | B16.4-98Cast Iron Threaded Fittings Classes 125 and 250 | | ANSI/ASME | | B16.9-01Factory-Made Wrought Steel Buttwelding Fittings | | ANSI/ASME | B16.11-01.....Forged Steel Fittings, Socket-Welding and Threaded ANSI/ASME | | B16.12-98 | .Cast Iron Threaded Drainage Fittings ANSI/ASME | |----|-------------------------|--| | | B16.15-85(R 1994) | .Cast Bronze Threaded Fittings ANSI/ASME | | | B16.18-01 | .Cast Copper Alloy Solder-Joint Pressure | | | | Fittings ANSI/ASME | | | B16.22-01 | .Wrought Copper and Copper Alloy Solder Joint | | | | Pressure Fittings ANSI/ASME | | | | Element ANSI/ASME | | D. | American Society for Te | sting and Materials (ASTM): | | | A47-99 | .Ferritic Malleable Iron Castings Revision 1989 | | | A53-02 | .Pipe, Steel, Black And Hot-Dipped, Zinc-coated | | | | Welded and Seamless | | | A74-03 | .Cast Iron Soil Pipe and Fittings | | | A183-83(R1998) | .Carbon Steel Track Bolts and Nuts | | | A312-03 | .Seamless and Welded Austenitic Stainless Steel | | | | Pipe | | | A536-84(R1999) E1 | .Ductile Iron Castings | | | A733-03 | .Welded and Seamless Carbon Steel and Austenitic | | | | Stainless Steel Pipe Nipples | | | B32-03 | .Solder Metal | | | B61-02 | .Steam or Bronze Castings | | | B62-02 | .Composition Bronze or Ounce Metal Castings | | | B75-99(Rev A) | .Seamless Copper Tube | | | B88-03 | .Seamless Copper Water Tube | | | B584-00 | .Copper Alloy Sand Castings for General | | | | Applications Revision A | | | в687-99 | .Brass, Copper, and Chromium-Plated Pipe Nipples | | | C564-03 | .Rubber Gaskets for Cast Iron Soil Pipe and | | | | Fittings | | | D2000-01 | .Rubber Products in Automotive Applications | | | D4101-03b | Propylene Plastic Injection and Extrusion | | | | Materials | | | D2447-93 | .Polyethylene (PE) Plastic Pipe, Schedule 40 and | | | | 80, Based on Outside Diameter | | | D2564-94 | .Solvent Cements for Poly (Vinyl Chloride) (PVC) | | | | Plastic Pipe and Fittings | | | D2665-94 Revision A | .Poly (Vinyl Chloride) (PVC) Plastic Drain, | | | | Waste, and Vent Pipe and Fittings | | | | | | | DA101 02h | |----|---| | | D4101-03bPropylene Plastic Injection and Extrusion | | | Materials | | | E1120Standard Specification For Liquid Chlorine | | | E1229Standard Specification For Calcium Hypochlorite | | Ε. | American Water Works Association (AWWA): | | | C110-03/ A21.10-03Ductile Iron and Gray Iron Fittings - 75 mm | | | thru 1200 mm (3 inch thru 48 inches) for Water | | | and other liquids AWWA/ ANSI | | | C151-00/ A21.51-02Ductile-Iron Pipe, Centrifugally Cast in Metal | | | Molds or Sand-Lined Molds, for Water or Other | | | Liquids AWWA/ ANSI | | | C203-02Coal-Tar Protective Coatings and Linings for | | | Steel Water Pipelines - Enamel and Tape - Hot | | | Applied AWWA/ ANSI | | | C651-99Disinfecting Water Mains | | F. | American Welding Society (AWS): | | | A5.8-92Filler Metals for Brazing | | G. | National Association of Plumbing - Heating - Cooling Contractors | | | (PHCC): | | | National Standard Plumbing Code - 1996 | | н. | International Association of Plumbing and Mechanical Officials (IAPMO): | | | Uniform Plumbing Code - 2000 | | | IS6-93Installation Standard | | I. | Manufacturers Standardization Society of the Valve and Fittings | | | Industry, Inc. (MSS): | | | SP-72-99Ball Valves With Flanged or Butt Welding For | | | General Purpose | | | SP-110-96Ball Valve Threaded, Socket Welding, Solder | | | Joint, Grooved and Flared Ends | | J. | American Society of Sanitary Engineers (ASSE): | | | 1001-02Pipe Applied Atmospheric Type Vacuum Breakers | | | 1018-01Performance for trap seal primer valve-water | | | supply fed | | | 1020-04Vacuum Breakers, Anti-Siphon, Pressure Type | | к. | Plumbing and Drainage Institute (PDI): | | | PDI WH-201Water Hammer Arrestor | ## PART 2 - PRODUCTS ## 2.1 INTERIOR DOMESTIC WATER PIPING - A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. For pipe 150 mm (6 inches) and larger, stainless, steel ASTM A312, schedule 10 may be used. - B. Fittings for Copper Tube: - 1. Wrought copper or bronze castings conforming to ANSI B16.18 and B16.22. Unions shall be bronze, MSS SP72 & SP 110, Solder or braze joints. - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75 C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, CDA 844. Mechanical grooved couplings, ductile iron, ASTM A536 (Grade 65-45-12), or malleable iron, ASTM A47 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel. - 3. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints. - C. Adapters: Provide adapters for joining screwed pipe to copper tubing. - D. Solder: ASTM B32 Composition Sb5 HA or HB. Provide non-corrosive flux. - E. Brazing alloy: AWS A5.8, Classification BCuP. ### 2.2 EXPOSED WATER PIPING - A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections. - 1. Pipe: Fed. Spec. WW-P-351, standard weight. - 2. Fittings: ANSI B16.15 cast bronze threaded fittings with chrome finish, (125 and 250). - 3. Nipples: ASTM B 687, Chromium-plated. - 4. Unions: Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets. B. Unfinished Rooms, Mechanical Rooms, Etc.: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING. ## 2.3 TRAP PRIMER WATER PIPING: - A. Pipe: Copper tube, ASTM B88, type K, hard drawn. - B. Fittings: Bronze castings conforming to ANSI B16.18 Solder joints. - C. Solder: ASTM B32 composition Sb5. Provide non-corrosive flux. #### 2.4 WATERPROOFING - A. Provide at points where pipes pass through membrane waterproofed floors or walls in contact with earth. - B. Floors: Provide cast iron stack sleeve with flashing device and a underdeck clamp. After stack is passed through sleeve, provide a waterproofed caulked joint at top hub. - C. Walls: See detail shown on drawings. #### 2.5 DIELECTRIC FITTINGS Provide dielectric couplings or unions between ferrous and non-ferrous pipe. ## 2.6 STERILIZATION CHEMICALS - A. Liquid Chlorine: ASTM E1120. - B. Hypochlorite: ASTM E1229, or Fed. Spec. AA-1427C, grade B. # 2.7 WATER HAMMER ARRESTER: Closed copper tube chamber with permanently sealed 410 kPa (60 psig) air
charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved Dow Corning No. 11 silicone compound. All units shall be designed in accordance with ASSE 1010 for sealed wall installations without an access panel. Size and install in accordance with Plumbing and Drainage Institute requirements (PDI WH 201). Unit shall be as manufactured by Precision Plumbing Products Inc., Watts or Sioux Chief. Provide water hammer arrestors at all solenoid valves, at all groups of two or more flush valves, at all quick opening or closing valves, and at all medical washing equipment. # PART 3 - EXECUTION #### 3.1 INSTALLATION - A. General: Comply with the PHCC National Standard Plumbing Code and the following: - 1. Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and - equipment, including those furnished by the Government or specified in other sections. - 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to full size after cutting. - 3. All pipe runs shall be laid out to avoid interference with other work. - 4. Install union and shut-off valve on pressure piping at connections to equipment. - 5. Pipe Hangers, Supports and Accessories: - a. All piping shall be supported per of the National Standard Plumbing Code, Chapter No. 8. - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with red lead or zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing. - c. Floor, Wall and Ceiling Plates, Supports, Hangers: - 1) Solid or split unplated cast iron. - 2) All plates shall be provided with set screws. - 3) Pipe Hangers: Height adjustable clevis type. - 4) Adjustable Floor Rests and Base Flanges: Steel. - 5) Concrete Inserts: "Universal" or continuous slotted type. - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place. - 7) Riser Clamps: Malleable iron or steel. - 8) Rollers: Cast iron. - 9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs. - 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gauge steel. The shield shall be sized for the insulation. - 11)Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support. 6. Install cast escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork. #### 7. Penetrations: - a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the fire stopping materials. - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. - B. Piping shall conform to the following: - 1. Domestic Water: - a. Where possible, grade all lines to facilitate drainage. Provide drain valves at bottom of risers. All unnecessary traps in circulating lines shall be avoided. - b. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above. # 3.2 TESTS - A. General: Test system either in its entirety or in sections. - B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 690 kPa (100 psi) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. - C. Reagent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 690 kPa (100 psi) gage during inspection and prove tight. - D. All Other Piping Tests: Test new installed piping under 1 1/2 times actual operating conditions and prove tight. # 3.3 STERILIZATION - A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651. - B. Use either liquid chlorine or hypochlorite for sterilization. - - - E N D - - - # SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING # PART 1 - GENERAL #### 1.1 DESCRIPTION This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section. ## 1.2 RELATED WORK - A. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures. - B. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems. - C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification. - D. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Pipe Insulation. - E. Section 07 92 00 Joint Sealants: Sealant products. ### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Piping. - 2. Floor Drains. - 3. Cleanouts. - 4. All items listed in Part 2 Products. - C. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain. ### 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers (ASME): (Copyrighted Society) All2.6.3-01 (R 2007)....Standard for Floor and Trench Drains Al3.1-07......Scheme for Identification of Piping Systems Bl6.3-06......Malleable Iron Threaded Fittings, Classes 150 and 300. - B16.4-06......Standard for Grey Iron Threaded Fittings Classes 125 and 250 - B16.12-98 (R 2006).....Cast Iron Threaded Drainage Fittings | C. American Society for Testing and Materials (ASTM): A47/A47M-99 (R 2004)Standard Specification for Steel Sheet, Aluminum Coated, by the Hot Dip Process A53/A53M-07Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless A74-06Standard Specification for Cast Iron Soil Pipe and Fittings A183-03Standard Specification for Carbon Steel Track Bolts and Nuts A536-84(R 2004).Standard Specification for Ductile Iron Castings B32-08Standard Specification for Solder Metal B75-02.Standard Specification for Solder Metal B75-02.Standard Specification for Copper Drainage Tube (DWV) B584-06a.Standard Specification for Copper Drainage Tube (DWV) B584-06a.Standard Specification for Copper Alloy Sand Castings for General Applications C564-03a.Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-08.Standard Classification for Solvent Cements for Products in Automotive Applications D2564-04El.Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings D2665-08.Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D. International Code Council: IPC-06International Plumbing Code E. Cast Iron Soil Pipe Institute (CISPI): 301-05Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-04Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary | | B16.15-06 | st Bronze Threaded Fittings, Classes 125 and | |--|----|----------------------------|---| |
A47/A47M-99 (R 2004)Standard Specification for Steel Sheet, Aluminum Coated, by the Hot Dip Process A53/A53M-07Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless A74-06Standard Specification for Cast Iron Soil Pipe and Fittings A183-03Standard Specification for Carbon Steel Track Bolts and Nuts A536-84(R 2004)Standard Specification for Ductile Iron Castings B32-08Standard Specification for Solder Metal B75-02Standard Specification for Seamless Copper Tube B306-02Standard Specification for Copper Drainage Tube (DWV) B584-06aStandard Specification for Copper Alloy Sand Castings for General Applications C564-03aStandard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-08Standard Specification System for Rubber Products in Automotive Applications D2564-04E1Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings D2665-08Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D. International Code Council: IPC-06International Plumbing Code E. Cast Iron Soil Pipe Institute (CISPI): 301-05Rubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-04Coupling for Use in Connection with Hubless | | 25 | 0 | | Aluminum Coated, by the Hot Dip Process A53/A53M-07 | C. | American Society for Testi | ng and Materials (ASTM): | | A53/A53M-07 Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless A74-06 Standard Specification for Cast Iron Soil Pipe and Fittings A183-03 Standard Specification for Carbon Steel Track Bolts and Nuts A536-84(R 2004) Standard Specification for Ductile Iron Castings B32-08 Standard Specification for Solder Metal B75-02 Standard Specification for Solder Metal B75-02 Standard Specification for Copper Drainage Tube (DWV) B584-06a Standard Specification for Copper Alloy Sand Castings for General Applications C564-03a Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-08 Standard Classification System for Rubber Products in Automotive Applications D2564-04El Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D. International Code Council: IPC-06 International Plumbing Code E. Cast Iron Soil Pipe Institute (CISPI): 301-05 Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-04 Coupling for Use in Connection with Hubless | | A47/A47M-99 (R 2004)St | andard Specification for Steel Sheet, | | And Hot-Dipped, Zinc-coated, Welded and Seamless A74-06 | | Al | uminum Coated, by the Hot Dip Process | | Seamless A74-06 | | A53/A53M-07St | andard Specification for Pipe, Steel, Black | | A74-06 | | An | d Hot-Dipped, Zinc-coated, Welded and | | and Fittings A183-03 | | Se | amless | | A183-03 | | A74-06St | andard Specification for Cast Iron Soil Pipe | | Bolts and Nuts A536-84(R 2004)Standard Specification for Ductile Iron Castings B32-08Standard Specification for Solder Metal B75-02Standard Specification for Seamless Copper Tube B306-02Standard Specification for Copper Drainage Tube (DWV) B584-06aStandard Specification for Copper Alloy Sand Castings for General Applications C564-03aStandard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-08Standard Classification System for Rubber Products in Automotive Applications D2564-04E1Standard Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings D2665-08Standard Specification for Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D. International Code Council: IPC-06International Plumbing Code E. Cast Iron Soil Pipe Institute (CISPI): 301-05Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-04Coupling for Use in Connection with Hubless | | an | d Fittings | | A536-84(R 2004) | | A183-03St | andard Specification for Carbon Steel Track | | Castings B32-08 | | Во | lts and Nuts | | B32-08 | | A536-84(R 2004)St | andard Specification for Ductile Iron | | B75-02 | | Ca | stings | | B306-02 | | B32-08St | andard Specification for Solder Metal | | (DWV) B584-06a | | B75-02St | andard Specification for Seamless Copper Tube | | B584-06a | | B306-02 | andard Specification for Copper Drainage Tube | | Castings for General Applications C564-03a | | (D | WV) | | C564-03a | | B584-06aSt | andard Specification for Copper Alloy Sand | | Cast Iron Soil Pipe and Fittings D2000-08 | | Ca | stings for General Applications | | D2000-08 | | C564-03aSt | andard Specification for Rubber Gaskets for | | Products in Automotive Applications D2564-04E1 | | Ca | st Iron Soil Pipe and Fittings | | D2564-04E1 | | D2000-08St | andard Classification System for Rubber | | Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings D2665-08 | | Pr | oducts in Automotive Applications | | Fittings D2665-08 | | D2564-04E1St | andard Specification for Solvent Cements for | | D2665-08 | | Po | ly (Vinyl Chloride) (PVC) Plastic Pipe and | | Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D. International Code Council: IPC-06 | | Fi | ttings | | Pipe and Fittings D. International Code Council: IPC-06 | | D2665-08st | andard Specification for Poly (Vinyl | | D. International Code Council: IPC-06 | | Ch | loride) (PVC) Plastic Drain, Waste, and Vent | | IPC-06 | | Pi | pe and Fittings | | E. Cast Iron Soil Pipe Institute (CISPI): 301-05 | D. | International Code Council | : | | 301-05 | | IPC-06In | ternational Plumbing Code | | Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-04Coupling for Use in Connection with Hubless | Ε. | Cast Iron Soil Pipe Instit | ute (CISPI): | | Piping Applications 310-04Coupling for Use in Connection with Hubless | | 301-05Hu | bless Cast Iron Soil Pipe and Fittings for | | 310-04Coupling for Use in Connection with Hubless | | Sa | nitary and Storm Drain, Waste, and Vent | | | | Pi | ping Applications | | Cast Iron Soil Pipe and Fittings for Sanitary | | 310-04 | upling for Use in Connection with Hubless | | | | Ca | st Iron Soil Pipe and Fittings for Sanitary | and Storm Drain, Waste, and Vent Piping Applications F. American Society of Sanitary Engineers (ASSE): 1018-01......Trap Seal Primer Valves - Potable, Water Supplied G. Plumbing and Drainage Institute (PDI): PDI WH-201.....Water Hammer Arrestor # PART 2 - PRODUCTS # 2.1 SANITARY WASTE, DRAIN, AND VENT PIPING - A. Cast iron waste, drain, and vent pipe and fittings - 1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications: - a. pipe buried in or in contact with earth - B. interior waste and vent piping above grade. - 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or no-hub or hubless). - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI Standard 301, ASTM A-888, or ASTM A-74. - 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM Standard C-564 or be installed with lead and oakum. - B. Copper Tube, (DWV): - 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains. - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306. - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29. - 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32. - C. Polyvinyl Chloride (PVC) - 1. Polyvinyl chloride (PVC) pipe and fittings are permitted where the waste temperature is below 60°C (140°F). - 2. PVC piping and fittings shall NOT be used for the following applications: - a. Waste collected from steam condensate drains - b. spaces such as mechanical equipment rooms, kitchens, SPD, and sterilizer areas. - b. Vertical waste and soil stacks serving more than two floors - c. Exposed in mechanical equipment rooms. - d. Exposed inside of ceiling return plenums - 3. Polyvinyl chloride sanitary waste, drain, and vent pipe and fittings shall be schedule 40 solid core sewer piping conforming to ASTM D 1785 and ASTM D2665, sewer and drain series with ends for solvent cemented joints. ## 4. Fittings: a. PVC fittings shall be solvent welded socket type using solvent cement conforming to ASTM D2564. #### 2.2 EXPOSED WASTE PIPING - A. Full iron pipe size chrome plated brass piping shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections. - 1. The Pipe shall meet Fed. Spec. WW-P-351, standard weight. - 2. The Fittings shall conform to ANSI B16.15, cast bronze threaded fittings with chrome finish, (125 and 250). - 3. Nipples shall conform to ASTM B 687, Chromium-plated. - 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets. - B. In unfinished Rooms such as mechanical Rooms and Storage, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING. # 2.3 SPECIALTY PIPE FITTINGS A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition
coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material: - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564. - 2. For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F 477 or ASTM D5926. - 3. For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined. - B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 860 kPa (125 psig) at a minimum temperature of 82°C (180°F). The end connection shall be solder joint copper alloy and threaded ferrous. - C. Dielectric flange insulating kits shall be of non conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers. - D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F 1545 with a pressure ratings of 2070 kPa (300 psig) at 107°C (225°F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene. # 2.4 CLEANOUTS - A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line. - B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall - consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type. - C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required. - D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp. # 2.5 FLOOR DRAINS - A. Type C (FD-C) floor drain shall comply with ANSI A112.6.3. The type C floor drain shall have a cast iron body, with bottom outlet, double drainage pattern, clamping device, light duty type B round nickel bronze adjustable strainer with vandal proof screws. The strainer shall be Zurn ZN415 or equivalent. - B. Type J (FD-J) floor drain shall comply with ANSI A112.6.3. The type J floor drain shall be a flushing rim drain with heavy duty cast iron body, double drainage pattern with flushing rim and clamping device. The nickel bronze grate shall be approximately 280 mm (11 inches) in diameter and flush with floor. A 4" deep-seal P-trap with flushing connection shall be attached to drain (Zurn Z-1000-FL). The body and trap shall have pipe taps for water supply connections (Zurn Z-310 or equivalent). - 1. Drain Flange: Flange for synthetic flooring. - 2. Flush Valve: Zurn Model No. Z6099, large diaphragm flushometer, exposed, side oscillating handle. For the flush valve mounting and installation detail, see the detail indicated on the drawings. #### 2.6 TRAPS A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as pipe connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture. ## 2.7 TRAP SEAL PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS - A. Trap Primer: The trap seal primer valve shall be hydraulic, supply type with a pressure rating of 5.98 kPa (125 psig) and conforming to standard ASSE 1018. - 1. The inlet and outlet connections shall be 15 mm or DN15 (NPS ½ inch) - 2. The trap seal primer valve shall be fully automatic with an all brass or bronze body. - 3. The trap seal primer valve shall be activated by a drop in building water pressure, no adjustment required. - 4. The trap seal primer valve shall include a manifold when serving two, three, or four traps. - 5. The manifold shall be omitted when serving only one trap. ### 2.8 WATERPROOFING - A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub. - B. Walls: See detail shown on drawings. # PART 3 - EXECUTION ## 3.1 PIPE INSTALLATION - A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications. - B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections. - C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting. - D. All pipe runs shall be laid out to avoid interference with other work. - E. The piping shall be installed above accessible ceilings where possible. - F. The piping shall be installed to permit valve servicing or operation. - G. Unless specifically indicated on the drawings, the minimum slope shall be 2% slope. - H. The piping shall be installed free of sags and bends. - I. Seismic restraint shall be installed where required by code. - J. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited. - K. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements. - L. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings" - ${\tt M.}$ Aboveground copper tubing shall be installed according to CDA's "Copper Tube Handbook". - N. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321. #### 3.2 JOINT CONSTRUCTION - A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints. - B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints. - C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints. - D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to
remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows: - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe. - E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used. - F. For PVC piping, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendixes. # 3.3 SPECIALTY PIPE FITTINGS - A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters. - B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing. # 3.3 PIPE HANGERS, SUPPORTS AND ACCESSORIES: A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and - these specifications. Where conflicts arise between these the code and Section 22 05 11, the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply. - B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing. - C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling. - D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters: - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod. - 2. 80 mm or DN 80 (NPS 3 inch): 1500 mm (60 inches) with 13 mm (½ inch) rod. - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 to NPS 5): 1500 mm (60 inches) with 16 mm (5/8 inch) rod. - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 19 mm ($\frac{3}{4}$ inch) rod. - 5. 250 mm or DN250 to 300 mm or DN 300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 22 mm (7/8 inch) rod. - E. The maximum spacing for plastic pipe shall be 1.22 m (4 feet). - F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than $4.57~\mathrm{m}$ (15 feet). - G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics: - 1. Solid or split unplated cast iron. - 2. All plates shall be provided with set screws. - 3. Height adjustable clevis type pipe hangers. - 4. Adjustable floor rests and base flanges shall be steel. - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place. - 7. Riser clamps shall be malleable iron or steel. - 8. Rollers shall be cast iron. - 9. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports. - H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support. - I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork. # J. Penetrations: - 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials. - 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. - K. Piping shall conform to the following: - 1. Waste and Vent Drain to main stacks: | Pipe Size | Minimum Pitch | |--|---------------| | 80 mm or DN 80 (3 inches) and smaller | 2% | | 100 mm or DN 100 (4 inches) and larger | 1% | 2. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents. ### 3.4 TESTS A. Sanitary waste and drain systems shall be tested either in its entirety or in sections. - B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed. - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints. - 2. For an air test, an air pressure of 35 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test. - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected. - 3. Final Tests: Either one of the following tests may be used. - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 1.3 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited. - b. Peppermint Test: Introduce (2 ounces) of peppermint into each line or stack. - - - E N D - - - # SECTION 22 40 00 PLUMBING FIXTURES ## PART 1 - GENERAL #### 1.1 DESCRIPTION Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories. #### 1.2 RELATED WORK - A. Sealing between fixtures and other finish surfaces: Section 07 92 00, JOINT SEALANTS. - B. Flush panel access doors: Section 08 31 13, ACCESS DOORS AND FRAMES. - C. Through bolts: Section 10 21 13, TOILET COMPARTMENTS. - D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING. #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Submit plumbing fixture information in an assembled brochure, showing cuts and full detailed description of each fixture. #### 1.4 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American National Standard Institute (ANSI): The American Society of Mechanical Engineers (ASME): A112.6.1M-02(R2008).....Floor Affixed Supports for Off-the-Floor Plumbing Fixtures for Public Use A112.19.1M-04.....Enameled Cast Iron Plumbing fixtures A112.19.2M-03(R2008)....Vitreous China Plumbing Fixtures All2.19.3-2001(R2008)...Stainless Steel Plumbing fixtures (Designed for Residential Use) - C. American Society for Testing and Materials (ASTM): - A276-2003......Stainless and Heat-Resisting Steel Bars and Shapes - D. National Association of Architectural Metal Manufacturers (NAAMM): NAAMM $\Delta MP = 500-505$ Metal Finishes Manual (1988) - E. American Society of Sanitary Engineers (ASSE): - 1016-05......Performance Requirements for Individual Thermostatic, Pressure Balancing and Combination Pressure Balancing and Thermostatic Control Valves for Individual Fixture Fittings - F. National Sanitation Foundation (NSF)/American National Standards Institute (ANSI): - 61-03......Drinking Water System Components-Health Effects - G. American with Disabilities Act(A.D.A) Section 4-19.4 Exposed Pipes and Surfaces #### PART 2 - PRODUCTS #### 2.1 STAINLESS STEEL - A. Corrosion-resistant Steel (CRS): - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276. - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4. - B. Die-cast zinc alloy products are prohibited. #### 2.2 STOPS - A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location. - B. Furnish keys for lock shield stops to Resident Engineer. - C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer. - D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple. ## 2.3 ESCUTCHEONS Heavy type, chrome plated,
with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork. # 2.4 LAMINAR FLOW CONTROL DEVICE - A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing. - B. Flow Control Restrictor: - 1. Capable of restricting flow from 95 to 110 mL/s (1.5 to 1.7 gpm) for lavatories; 125 to 140 mL/s (2.0 to 2.2 gpm) for sinks. - 2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 and 550 kPa (25 and 80 psi). - 3. Operates by expansion and contraction, eliminates mineral/sediment build-up with self-clearing action, and is capable of easy manual cleaning. - C. Device manufactured by OMNI Products, Inc. or equal. #### 2.5 CARRIERS A. ASME/ANSI All2.6.1M, lavatory, // chair carrier for thin wall construction // steel plate as detailed on drawing. // All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture. #### 2.6 FIXTURES The manufacturer and model numbers listed are for reference to indicate the type and quality of fixtures to be used. All fixtures and trim shall be as follows or approved equal. # A. Water Closet "WC-1" - Accessible - "American Standard" Model No. 2386.12, "Cadet3" vitreous china, 1.6 gallons per flush, siphon jet, elongated bowl, floor outlet, tank type unit with bolt covers, fully glazed 2-1/8" trapwall. - 2. "Olsonite" heavy duty, commercial grade, open front, white solid plastic seat, with stainless steel check hinge and cover. - 3. "McGuire" No. 166LK, chrome plated, angle supply with flexible riser, loose key stop, chrome plated supply nipple and chrome plated escutcheon. # B. Lavatory "L-1" - Accessible - "American Standard" Model No. 0355.012, "Lucerne" 20" x 18" vitreous china, wall hung lavatory. - "Zurn" No. Z81103-P-3M, 4" centerset faucet with pop-up waste assembly, vandal resistant, color coded brass dome lever handles. - 3. "McGuire" No. 8902, 1-1/4" x 1-1/2" chrome plated, 17 gauge, cast body P-trap assembly, with cast brass nuts, cleanout plug and escutcheon. - 4. "McGuire" No. 165LK, chrome plated angle supplies with flexible risers, loose key stops, chrome plated supply nipples and chrome plated escutcheons. - 5. "TrueBro" LavGuard 2 white, antimicrobial undersink pipe cover assembly for P-trap and angle supply valves. - 6. "Apollo" Model 34D-302-B17" "MVD Mini Mixer" chrome plated ASSE 1070 thermostatic mixing valve with integrated checks, undersink mounting bracket and cold water tee fitting for hot and cold control. Provide - additional chrome plated supply tubing as required for complete installation. - 7. Mounting height to be no higher than 34" to rim surface from finish floor with a clearance of at least 29" above finish floor to bottom of fixture. # C. Shower Unit "SH-1" - Accessible - 1. Hamilton Northeast Model G-3698 IBS, ADA ANSI Al17.1 2003 compliant, one-piece, gelcoat fiberglass enclosure with factory installed, ADA compliant grab bar configuration, folding transfer seat (right or left side as required), vertical assist bar, 1" diameter stainless steel shower rod. Provide with heavy weighted shower curtain and hooks and collapsible dam. Install unit as per manufacturer's instructions. - 2. Provide with Zurn Model Z7101-SS-LH-DV2P-HW-V8 commercial shower system. ADA compliant system to include pressure-balancing mixing valve, diverter valve, stationary shower head, hand-held shower with metal hose, 24" slide bar and vacuum breaker. ## D. Mop Basin "MB-1" - No. MSB-3624, molded mop basin with chrome plated strainer, rim guards, stainless steel wall guards, 30" rubber hose/bracket and mop hanger bracket. Use silicone sealant caulk on wall and floor contact edges. - 2. Model No. 830-AA, chrome plated faucet with vacuum breaker spout with hose thread, pail hook and top brace. ## E. Sink "S-1" (Trim Only) - 1. Stainless steel counter with integral bowl furnished by Owner. - 2. "Chicago" Model No. 626-FCCP chrome plated, rigid/swing spout with laminar flow control device in spout and 1.5 GPM flow rate. - 3. "Chicago" Model No. 625-CP foot pedal control Combination Pedal Box. Polished chrome plated solid brass construction, short medal pedals and self closing renewable cartridge. Install as per manufacturer's instructions. - 4. "McGuire" No. 8912, 1-1/2" X 1-1/2", chrome plated, 17 gauge, cast body P-trap assembly, with cast brass nuts, cleanout plug and escutcheons. - 5. "McGuire" No. 165 chrome plated angle supplies with flexible risers, loose key stops, chrome plated supply nipples and chrome plated escutcheons. - 6. "Guardian" Model No. EW1849LH-R, deck mounted "AutoFlow" swivel eyewash less bowl. Supplied with in-line strainer, polypropylene "GS Plus" spray head with integral "flip top" dust covers, filters and 1,8 GPM flow control orifices mounted on a chrome plated brass eyewash assembly. Unit shall include ANSI compliant signage. Drill hole through sink faucet ledge/countertop where fitting is to be installed. - 7. Provide "Guardian" Model No. G3600 thermostatic mixing valve below counter/inside casework to serve eyewash. - 8. Provide additional supply piping and stainless steel braided hose supplies as required for complete installation of foot pedal control valve and eyewash thermostatic mixing valve. # F. Sink "S-2" (Trim Only) - 1. Stainless steel counter with integral bowl furnished by Owner. - 2. "Chicago" Model No. 50-317CP chrome plated rigid/swing spout with wrist blade handles and laminar flow device. - 3. "McGuire" No. 8912, 1-1/2" X 1-1/2", chrome plated, 17 gauge, cast body P-trap assembly, with cast brass nuts, cleanout plug and escutcheons. - 4. "McGuire" No. 165 chrome plated angle supplies with flexible risers, loose key stops, chrome plated supply nipples and chrome plated escutcheons. ## PART 3 - EXECUTION - A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. - B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops. - C. Toggle Bolts: For hollow masonry units, finished or unfinished. - D. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4-inch) diameter bolts, and to extend at least 75 mm (3-inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited. - E. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4-inch) threaded studs, and shall extend at least 35 mm $(1-1/4\ inches)$ into wall. - F. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury. - G. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet. - H. Do not use aerators on lavatories and sinks. # 3.2 CLEANING At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned. - - - E N D - - - # SECTION 11 78 13 MORTUARY REFRIGERATOR EQUIPMENT ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Modify and relocate existing condensing unit for existing autopsy body refrigerator. - B. Refer to the H drawings for piping layout and installation details. - C. Refer to Section 23 23 00, REFRIGERANT PIPING, for piping and insulation. - D. Refer to electrical drawings for power. ## 1.2 RELATED WORK - A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Section 23 23 00, REFRIGERANT PIPING. - C. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. ## 1.3 QUALITY ASSURANCE Safety Standard: ASHRAE 15, describe requirements for refrigerant containing parts. ## 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data. Contact unit manufacturer to provide: - 1. Details for retrofit of condensing unit. - 2. Diagrams and details of piping, wiring and controls. - C. Operating Test Data. - D. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air-Conditioning and Refrigeration Institute (ARI): - 420-00......Unit Coolers for Refrigeration. - 520-04......Performance Rating of Positive Displacement Condensing Units. - C. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE): - 15-07.....Safety Standard for Refrigeration Systems ## PART 2 - PRODUCTS ## 2.1 CONDENSING UNITS A. Comply with ARI Standard 520. Existing air cooled as shown, motor driven integral compressor, motor starter, condenser, receiver, common base, and safety/operational controls. For units installed outdoors provide a factory fabricated steel rack extending approximately 920 mm (36 inches) above grade. Do not locate compressors on top of refrigerator or freezers. ## B. Air Cooled Condensing Units: Furnish and install all equipment required to modify existing condenser to allow it to operate at lower head pressures during low ambient temperature conditions and to weather-proof it for outdoor installation, to operate satisfactorily at winter ambient temperatures down to -10 degrees. Provide with crankcase and receiver heaters. # 2.2 PIPING, PIPE INSULATION, AND REFRIGERANT AND OIL CHARGES Refer to Section 23 23 00,
REFRIGERANT PIPING. ## 2.3 EQUIPMENT IDENTIFICATION REQUIREMENTS - A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Identify all refrigeration equipment. # 2.5 AUTOPSY REFRIGERATOR SPECIAL ITEMS - A. Exhaust ventilation provision: - 1. Ceiling grille: Refer to 23-37-00 Air Outlets and Inlets. Make up air for exhaust through the open door. Provide stainless steel duct extension to six inches above the top of the ceiling panel. - 2. Door switch: Mount switch in door frame and extend wiring to a junction box above the ceiling. The purpose of the switch is to activate an automatic exhaust damper when the door is open. # PART 3 - EXECUTION ### 3.1 INSTALLATION - A. Relocate and install refrigeration equipment as shown on the H Drawings, and as described in the respective manufacturer's instructions. - B. Piping, Pipe Insulation and Refrigerant: Provide in accordance with Section 23 23 00, REFRIGERANT PIPING. ## 3.2 REFRIGERATOR START-UP, AND PERFORMANCE TESTS AND INSTRUCTIONS A. Start-up Temperature Reduction: On start-up, reset the room thermostats daily for a maximum temperature drop of 8 degrees, on C scale (15 - degrees on F scale per day down to 2 degrees C (36 degrees F), and a maximum of 6 degrees on C scale, (10 degrees on F scale) per day between 2 degrees C (36 degrees F) and final operating temperature. - B. Perform test in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Operate each system and record conditions hourly for eight hours. Submit the following information: - 1. Station, Building and System Identification, Contractor, Date and Time. - 2. Compressor nameplate data: Make, model, horsepower, RPM, refrigerant and charge in pounds. - 3. Compressor operation: Approximate percentage running time, pressure gage readings, actual amps (starting and running), condenser water temperature in and out, or condenser entering air temperature. - 4. Room temperatures. - 5. Defrost and drain functions of unit coolers. Demonstrate alarm functions. - C. By arrangement with the Resident Engineer, 24 hours in advance, use the start-up and test period for required operation and maintenance instructions to VA personnel in accordance with Section 01 00 00, GENERAL REQUIREMENTS. - - - E N D - - - # SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 23. - B. Definitions: - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms. - 2. Option or optional: Contractor's choice of an alternate material or method. - 3. RE: Resident Engineer - 4. COTR: Contracting Officer's Technical Representative. ## 1.2 RELATED WORK - A. Section 00 72 00, GENERAL CONDITIONS - B. Section 01 00 00, GENERAL REQUIREMENTS - C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES - D. Section 05 50 00, METAL FABRICATIONS - E. Section 07 84 00, FIRESTOPPING - F. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations - G. Section 07 92 00, JOINT SEALANTS - H. Section 09 91 00, PAINTING - I. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION - J. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT - K. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC - L. Section 23 07 11, HVAC, PLUMBING, and Boiler Plant Insulation - M. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC - N. Section 23 21 13, HYDRONIC PIPING - O. Section 23 21 23, HYDRONIC PUMPS - V. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING - Q. Section 23 22 23, STEAM CONDENSATE PUMPS - R. Section 23 23 00, REFRIGERANT PIPING - S. Section 23 25 00, HVAC WATER TREATMENT - T. Section 23 31 00, HVAC DUCTS and CASINGS - U. Section 23 34 00, HVAC FANS - V. Section 23 37 00, AIR OUTLETS and INLETS - W. Section 23 40 00, HVAC AIR CLEANING DEVICES - X. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS - Y. Section 23 84 00, HUMIDITY CONTROL EQUIPMENT - Z. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training - AA. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS ## 1.3 QUALITY ASSURANCE - A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC - B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. - C. Equipment Vibration Tolerance: - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary. - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance. ## D. Products Criteria: - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements. - 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly. - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities, if the - local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer. - 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer. - 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product. - 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment. - 7. Asbestos products or equipment or materials containing asbestos shall not be used. - E. Equipment Service Organizations: - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site. - F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements: - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications". - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping". - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current. - G. Execution (Installation, Construction) Quality: - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material. - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved. - H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections. - B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements. - C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract. - D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation. - E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a
group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient. ## F. Layout Drawings: - Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas. Refer to Section 00 72 00, GENERAL CONDITIONS, Article, SUBCONTRACTS AND WORK COORDINATION. - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items - requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems. - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved. - 4. In addition, for HVAC systems, provide details of the following: - a. Mechanical equipment rooms. - b. Hangers, inserts, supports, and bracing. - c. Pipe sleeves. - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs. - G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section. - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the Resident Engineer. - 2. Submit electric motor data and variable speed drive data with the driven equipment. - 3. Equipment and materials identification. - 4. Fire-stopping materials. - 5. Hangers, inserts, supports and bracing. - H. HVAC Maintenance Data and Operating Instructions: - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets. - I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009......Central Station Air-Handling Units - D. Rubber Manufacturers Association (ANSI/RMA): IP-20-2007......Specifications for Drives Using Classical V-Belts and Sheaves | | IP-21-2009Spec | fications for Drives Using Double-V | |----|---|---| | | (Hex | gonal) Belts | | | IP-22-2007Spec | fications for Drives Using Narrow V-Belts | | | and | heaves | | Ε. | . Air Movement and Control Ass | ciation (AMCA): | | | 410-96Reco | mended Safety Practices for Air Moving | | | Devi | es | | F. | . American Society of Mechanical Engineers (ASME): | | | | Boiler and Pressure Vessel Code (BPVC): | | | | Section I-2007Powe | Boilers | | | Section IX-2007Welding and Brazing Qualifications | | | | Code for Pressure Piping: | | | | B31.1-2007Power Piping | | | G. | G. American Society for Testing and Materials (ASTM): A36/A36M-08Standard Specification for Carbon Structural | | | | | | | | Stee | | | | A575-96(2007)Stan | ard Specification for Steel Bars, Carbon, | | | Merc | ant Quality, M-Grades | | | E84-10Stan | ard Test Method for Surface Burning | | | Char | cteristics of Building Materials | | | E119-09cStan | ard Test Methods for Fire Tests of Building | | | Cons | ruction and Materials | | Н. | H. Manufacturers Standardization Society (MSS) of the Valve and Fittings | | | | Industry, Inc: | | | | SP-58-2009Pipe Hangers and Supports-Materials, Design a | | | | Manu | acture, Selection, Application, and | | | | llation | | | | Hangers and Supports-Selection and | | | | cation | | | | ng for Piping Systems, Seismic - Wind - | | | - | nic, Design, Selection, Application | | I. | . National Electrical Manufact | | | | MG-1-2009 | | | J. | . National Fire Protection Ass | | | | 31-06Standard for Installation of Oil-Burning | | | | Equi | | | | 54-09 | | | | 70-08 | | | | 85-07Boil | r and Combustion Systems Hazards Code | 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 101-09....Life Safety Code ## 1.6 DELIVERY, STORAGE AND HANDLING # A. Protection of Equipment: - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage. - 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government. - 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation. - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work. # B. Cleanliness of Piping and Equipment Systems: - 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping. - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems. - 3. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems. ## 1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING - A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities, that serve the medical center. - B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center. - C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the Resident Engineer during periods when the demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm - and 5 am in the appropriate off-season (if applicable). Provide at least one week advance notice to the Resident Engineer. - D. Phasing of Work: Comply with all requirements shown on drawings or specified. - E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. - F. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel. - G. Temporary Facilities: Refer to Article, TEMPORARY PIPING AND EQUIPMENT in this section. ## PART 2 - PRODUCTS ## 2.1 FACTORY-ASSEMBLED PRODUCTS - A. Provide maximum standardization of components to reduce spare part requirements. - B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit. - 1. All components of an assembled unit need not be products of same manufacturer. - 2. Constituent parts that are alike shall be products of a single manufacturer. - 3. Components shall be compatible with each other and with the total assembly for intended service. - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly. - C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate - securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment. - D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met. ## 2.2 COMPATIBILITY OF RELATED EQUIPMENT Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements. #### 2.3 BELT DRIVES - A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber. - B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21. - C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center
distance, and arc of contact. - D. Maximum Speed: 25 m/s (5000 feet per minute). - E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up. - F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard. - G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts. - H. Sheaves and Pulleys: - 1. Material: Pressed steel, or close grained cast iron. - 2. Bore: Fixed or bushing type for securing to shaft with keys. - 3. Balanced: Statically and dynamically. - 4. Groove spacing for driving and driven pulleys shall be the same. - I. Drive Types, Based on ARI 435: - 1. Provide adjustable-pitch //or fixed-pitch// drive as follows: - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller. - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller. - 2. Provide fixed-pitch drives for drives larger than those listed above. - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially. ## 2.4 DRIVE GUARDS - A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings. - B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings. - C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement. - D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment. - E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center. ## 2.5 LIFTING ATTACHMENTS Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load. # 2.6 ELECTRIC MOTORS A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled. ### 2.7 VARIABLE SPEED MOTOR CONTROLLERS A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for specifications. - B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer. - C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch. - D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system. - E. Controller shall be provided with the following operating features and accessories: - 1. Suitable for variable torque load. - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum //25,000//30,000// AIC. Provide AC input //line reactors (3% impedance)//filters// on incoming power line. Provide output line reactors on line between drive and motor //for motors over 50 HP or// where the distance between the breaker and motor exceeds 50 feet. # 2.8 EQUIPMENT AND MATERIALS IDENTIFICATION - A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING. - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc. - C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment. - D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams. - E. Valve Tags and Lists: - 1. HVAC: Provide tags for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS. - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook. - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling. ## 2.9 FIRESTOPPING Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation. ## 2.10 GALVANIZED REPAIR COMPOUND Mil. Spec. DOD-P-21035B, paint form. ## 2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS - A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - B. Supports for Roof Mounted Items: - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 mm by 100 mm (2 by 4) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 280 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation. - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts. - C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements. - D. Attachment to Concrete Building Construction: - 1. Concrete insert: MSS SP-58, Type 18. - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition. - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition. - E. Attachment to Steel Building Construction: - 1. Welded attachment: MSS SP-58, Type 22. - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter. - F. Attachment to existing structure: Support from existing floor/roof frame. - G. Attachment to Wood Construction: Wood screws or lag bolts. - H. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable. - I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping. - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds). - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40
insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger. - J. Supports for Piping Systems: - 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping. - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58): a. Standard clevis hanger: Type 1; provide locknut. - b. Riser clamps: Type 8. - c. Wall brackets: Types 31, 32 or 33. - d. Roller supports: Type 41, 43, 44 and 46. - e. Saddle support: Type 36, 37 or 38. - f. Turnbuckle: Types 13 or 15. Preinsulate. - g. U-bolt clamp: Type 24. - h. Copper Tube: - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis. - 2) For vertical runs use epoxy painted or plastic coated riser clamps. - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps. - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube. - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. - 3. High and Medium Pressure Steam (MSS SP-58): - a. Provide eye rod or Type 17 eye nut near the upper attachment. - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars. - c. Piping with Vertical Expansion and Contraction: - 1) Movement up to 20 mm (3/4-inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator. - 2) Movement more than 20 mm (3/4-inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator. - K. Pre-insulated Calcium Silicate Shields: - 1. Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal. - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection. - 3. Shield thickness shall match the pipe insulation. - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with. - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines. - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket. - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.// ## 2.12 PIPE PENETRATIONS - A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays. - B. To prevent accidental liquid spills from passing to a lower level, provide the following: - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint. - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening. - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration. - C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer. - D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below. - E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve. - F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate. - G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate. - H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction. - I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases. - J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. #### 2.13 DUCT PENETRATIONS - A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter. - B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING. # 2.14 SPECIAL TOOLS AND LUBRICANTS - A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished. - B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment. - C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment. - D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer. - E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. # 2.15 WALL, FLOOR AND CEILING PLATES A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection. - B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe. - C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified. #### 2.16 ASBESTOS Materials containing asbestos are not permitted. #### PART 3 - EXECUTION # 3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING - A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified. - B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings. - C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation. - D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations. # E. Cutting Holes: - 1. Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited. - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor - considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval. - 3. Do not penetrate membrane waterproofing. - F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not
shown but must be provided. - G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided. - H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70. - I. Protection and Cleaning: - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion of the Resident Engineer, shall be replaced. - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment. - J. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work. - K. Work in Existing Building: - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s). - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility. - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation. - L. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment of to ceiling structure, whichever is lower (NFPA 70). # M. Inaccessible Equipment: - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government. - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork. # 3.2 TEMPORARY PIPING AND EQUIPMENT - A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping. - B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply. - C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service. #### 3.3 RIGGING - A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme. - B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building. - C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service. - D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions. - E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility. - F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work. - G. Restore building to original condition upon completion of rigging work. ## 3.4 PIPE AND EQUIPMENT SUPPORTS - A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer. - B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer. - C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work. - D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow. - E. HVAC Vertical Pipe Supports: - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure. - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure. #### F. Overhead Supports: - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead. - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping. - 3. Tubing and capillary systems shall be supported in channel troughs. #### 3.5 MECHANICAL DEMOLITION - A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant. - B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations. - C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. - Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled. - D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain
Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. #### 3.6 CLEANING AND PAINTING - A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING. - B. In addition, the following special conditions apply: - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats. - 2. Material And Equipment Not To Be Painted Includes: - a. Motors, controllers, control switches, and safety switches. - b. Control and interlock devices. - c. Regulators. - d. Pressure reducing valves. - e. Control valves and thermostatic elements. - f. Lubrication devices and grease fittings. - g. Copper, brass, aluminum, stainless steel and bronze surfaces. - h. Valve stems and rotating shafts. - i. Pressure gauges and thermometers. - j. Glass. - k. Name plates. - Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer. - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. - 6. Paint shall withstand the following temperatures without peeling or discoloration: - a. Condensate and feedwater -- 38 degrees C (100 degrees F) on insulation jacket surface and 120 degrees C (250 degrees F) on metal pipe surface. - b. Steam -- 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (375 degrees F) on metal pipe surface. - 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this. #### 3.7 IDENTIFICATION SIGNS - A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws. - B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance. - C. Pipe Identification: Refer to Section 09 91 00, PAINTING. ## 3.8 MOTOR AND DRIVE ALIGNMENT - A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane. - B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures. ## 3.9 LUBRICATION - A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication. - B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application. - C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied. D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates. #### 3.10 COMMISSIONING - A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. - B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning. #### 3.11 STARTUP AND TEMPORARY OPERATION Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT. #### 3.12 OPERATING AND PERFORMANCE TESTS - A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer. - B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government. - C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. # 3.13 INSTRUCTIONS TO VA PERSONNEL Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS, and Section 23 08 11, DEMONSTRATIONS AND TESTS FOR BOILER PLANT. - - - E N D - - - # SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT ## PART 1 - GENERAL #### 1.1 DESCRIPTION Noise criteria, vibration tolerance and vibration isolation for HVAC work #### 1.2 RELATED WORK - A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23. - B. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Requirements for optional Air Handling Unit internal vibration isolation. - C. Section 23 31 00, HVAC DUCTS and CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining. - D. SECTION 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: requirements for sound and vibration tests. - E. SECTION 23 37 00, AIR OUTLETS and INLETS: noise requirements for grilles. - F. SECTION 23 21 23, HYDRONIC PUMPS: vibration isolation requirements for pumps. - G. SECTION 23 34 00, HVAC FANS: sound and vibration isolation requirements for fans. - H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training. ## 1.3 QUALITY ASSURANCE A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. SPEC WRITER NOTE: Edit list of rooms and NC levels to suit specific project being designed. Add rooms and NC levels if required. ## B. Noise Criteria: 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels: | TYPE OF ROOM | NC LEVEL | |--------------|----------| | Autopsy Room | 40 | - 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration. - 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room. - 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation. - C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet. # 1.4 SUBMITTALS - A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Vibration isolators: - a. Hangers - C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported. ## 1.5 APPLICABLE PUBLICATIONS A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. | В. | American Society of Heating, Refrigerating and Air-Conditioning | |----|---| | | Engineers, Inc. (ASHRAE): | | | 2009Fundamentals Handbook, Chapter 7, Sound and | | | Vibration | | C. | American Society for Testing
and Materials (ASTM): | | | A123/A123M-09Standard Specification for Zinc (Hot-Dip | | | Galvanized) Coatings on Iron and Steel Products | | | A307-07bStandard Specification for Carbon Steel Bolts | | | and Studs, 60,000 PSI Tensile Strength | | | D2240-05(2010)Standard Test Method for Rubber Property - | | | Durometer Hardness | | D. | Manufacturers Standardization (MSS): | | | SP-58-2009Pipe Hangers and Supports-Materials, Design and | | | Manufacture | | Ε. | Occupational Safety and Health Administration (OSHA): | | | 29 CFR 1910.95Occupational Noise Exposure | | F. | American Society of Civil Engineers (ASCE): | | | ASCE 7-10Minimum Design Loads for Buildings and Other | | | Structures. | | G. | American National Standards Institute / Sheet Metal and Air | | | Conditioning Contractor's National Association (ANSI/SMACNA): | | | 001-2008Seismic Restraint Manual: Guidelines for | - H. International Code Council (ICC): 2009 IBC.....International Building Code. - I. Department of Veterans Affairs (VA): ## PART 2 - PRODUCTS #### 2.1 GENERAL REQUIREMENTS A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings. Mechanical Systems, 3rd Edition. - B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve. - C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be - electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed. - D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed. - E. Color code isolators by type and size for easy identification of capacity. ## 2.2 VIBRATION ISOLATORS - A. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe. - 1. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box. #### PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Vibration Isolation: - No metal-to-metal contact will be permitted between fixed and floating parts. - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment. - B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels. ## 3.2 ADJUSTING - A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight. - B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation. - C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop. - D. Adjust active height of spring isolators. ## 3.3 COMMISSIONING - A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. - B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning. - - - E N D - - - # SELECTION GUIDE FOR VIBRATION ISOLATORS | EQUIPMENT | 0 | N GRAD | E | 20FT FLOOR SPAN | | 30FT FLOOR SPAN | | 40FT FLOOR SPAN | | 50FT FLOOR | | SPAN | | | | |----------------------|--------------|--------------|-------------|-----------------|--------------|-----------------|--------------|-----------------|-------------|--------------|--------------|-------------|--------------|--------------|-------------| | | BASE
TYPE | ISOL
TYPE | MIN
DEFL | | ROOF FANS | | | | | | | | | | | | | | | | | ABOVE OCCUPIED AREA | s: | | | | | | | | | | | | | | | | 5 HP & OVER | | | | СВ | S | 1.0 | | AIR HANDLING UNIT PA | ACKAGES | 3 | | | | | | | | | | | | | | | SUSPENDED: | | | | | | | | | | | | | | | | | UP THRU 5 HP | | | | | Н | 1.0 | | 7-1/2 HP & OVER: | _ | | | _ | • | • | | • | | | | | | | | # SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following: - 1. Planning systematic TAB procedures. - 2. Design Review Report. - 3. Systems Inspection report. - 4. Duct Air Leakage test report. - 5. Systems Readiness Report. - 6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls. - 7. Vibration and sound measurements. - 8. Recording and reporting results. ## B. Definitions: - 1. Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of ASHRAE Handbook, "HVAC Applications". - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives. - 3. AABC: Associated Air Balance Council. - 4. NEBB: National Environmental Balancing Bureau. - 5. Hydronic Systems: Includes chilled water. - Air Systems: Includes all outside air, supply air and exhaust air systems. - 7. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents. ## 1.2 RELATED WORK - A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General Mechanical Requirements. - B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements. - C. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Piping and Equipment Insulation. - D. Section 23 37 00, AIR OUTLETS AND INLETS. - E. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage. - F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings. #### 1.3 QUALITY ASSURANCE - A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Qualifications: - 1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor. - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency. - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor. - 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: - a. Shall directly supervise all TAB work. - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard,
AABC or NEBB. - c. Would follow all TAB work through its satisfactory completion. - d. Shall provide final markings of settings of all HVAC adjustment devices. - e. Permanently mark location of duct test ports. - 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. - C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose. ## D. Tab Criteria: - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports. - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 90 percent of final values for pre-filters and after-filters. - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent. - b. Minimum outside air: 0 percent to plus 10 percent. - c. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 2 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be 0 to plus 5 percent. - d. Chilled water pumps: 0 percent to plus 5 percent. - e. Chilled water coils: 0 percent to plus 5 percent. - 3. Systems shall be adjusted for energy efficient operation as described in PART 3. - 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three rooms) and one hydronic system (chilled water coil) as follows: - a. When field TAB work begins. - b. During each partial final inspection and the final inspection for the project if requested by VA. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment. - C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work. - D. Submit Following for Review and Approval: - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor. - 2. Systems inspection report on equipment and installation for conformance with design. - 3. Duct Air Leakage Test Report. - 4. Systems Readiness Report. - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests. - 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements. E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area. ### 1.5 APPLICABLE PUBLICATIONS - A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization. - B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): - 2003......HVAC Applications ASHRAE Handbook, Chapter 37, Testing, Adjusting, and Balancing and Chapter 47, Sound and Vibration Control - C. Associated Air Balance Council (AABC): - 2002......AABC National Standards for Total System Balance - D. National Environmental Balancing Bureau (NEBB): - 7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems - 1st Edition 1994Procedural Standards for the Measurement and Assessment of Sound and Vibration - 2^{nd} Edition 1999Procedural Standards for Building Systems Commissioning - E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): - 3rd Edition 2002HVAC SYSTEMS-Testing, Adjusting and Balancing ## PART 2 - PRODUCTS #### 2.1 PLUGS Provide plastic plugs to seal holes drilled in ductwork for test purposes. #### 2.2 INSULATION REPAIR MATERIAL See Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION. Provide for repair of insulation removed or damaged for TAB work. ## PART 3 - EXECUTION #### 3.1 GENERAL - A. Refer to TAB Criteria in Article, Quality Assurance. - B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems. #### 3.2 DESIGN REVIEW REPORT The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation. ## 3.3 SYSTEMS INSPECTION REPORT - A. Inspect equipment and installation for conformance with design. - B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time. - C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing. # 3.4 DUCT AIR LEAKAGE TEST REPORT See paragraphs "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS AND CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies. ## 3.5 SYSTEM READINESS REPORT - A. Inspect each System to ensure that it is complete including installation and operation of controls. - B. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer. ## 3.6 TAB REPORTS - A. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report. - B. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval. C. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer. ### 3.7 TAB PROCEDURES - A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB. - B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work. - C. Coordinate TAB procedures with any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. - D. Allow sufficient time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies. SPEC WRITER NOTE: Edit the following list to include all air devices on project which require balancing. - E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, and laboratory fume hoods and cabinets. - Artificially load air filters by partial blanking to produce air pressure drop of at least 90 percent of the design final pressure drop. - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - 3. Test and balance systems in all specified modes of operation. Verify that dampers and other controls function properly. - 4. Record final measurements for air handling equipment performance data sheets. - F. Water Balance and Equipment Test: Include circulating pumps and coils: - 1. Adjust flow rates for equipment. Set coils to values on equipment submittals, if different from values on contract drawings. - 2. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time. #### 3.8 VIBRATION TESTING - A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND
STEAM GENERATION. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors. - B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer. #### 3.9 SOUND TESTING - A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - 1. Take readings in Autopsy Room. - B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB. - C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL - D. Determine compliance with specifications as follows: - 1. When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment. - b. Measure octave band sound pressure levels with specified equipment "off." - c. Measure octave band sound pressure levels with specified equipment "on." d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment. | DIFFERENCE: | 0 | 1 | 2 | 3 | 4 | 5 to 9 | 10 or More | |-------------|----|---|---|---|---|--------|------------| | FACTOR: | 10 | 7 | 4 | 3 | 2 | 1 | 0 | Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR. - e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves. - E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated. # 3.10 MARKING OF SETTINGS Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer. ## 3.11 IDENTIFICATION OF TEST PORTS The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier. - - - E N D - - - # SECTION 23 07 11 HVAC INSULATION #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Field applied insulation for thermal efficiency and condensation control for - 1. HVAC piping, ductwork and equipment. #### B. Definitions - 1. ASJ: All service jacket, white finish facing or jacket. - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment. - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below. - 4. Concealed: Ductwork and piping above ceilings and in chases, //interstitial space, // and pipe spaces. - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas. - 6. FSK: Foil-scrim-kraft facing. - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F). - 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot). - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units. - 10. Thermal conductance: Heat flow rate through materials. - a. Flat surface: Watt per square meter (BTU per hour per square foot). - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot). - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference). - 12. HPS: High pressure steam (415 kPa [60 psig] and above). - 13. HPR: High pressure steam condensate return. - 14. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig]. - 15. MPR: Medium pressure steam condensate return. - 16. LPS: Low pressure steam (103 kPa [15 psig] and below). - 17. LPR: Low pressure steam condensate gravity return. - 18. CH: Chilled water supply. - 19. CHR: Chilled water return. - 20. RS: Refrigerant suction. - 21. PVDC: Polyvinylidene chloride vapor retarder jacketing, white. ## 1.2 RELATED WORK - A. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant. - B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23. - C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General requirements pertaining to mechanical Boiler Plant work. - D. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant piping and fittings. - E. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING: Piping and equipment. - F. Section 23 21 13, HYDRONIC PIPING: Chilled water piping. - G. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings. #### 1.3 OUALITY ASSURANCE - A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Criteria: - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows: - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.2</u> or <u>4.3.3.1.3</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, - Standard Method of Test of Surface Burning Characteristics of Building Materials. - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.) - **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard. - **4.3.3.1.3** Smoke detectors required by $\frac{6.4.4}{\text{smoke}}$ shall not be required to meet flame spread index or smoke developed index requirements. - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following: - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors - (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors $\frac{1}{2}$ - 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. - 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F). - 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4. - 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices. - 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening. - 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following. - 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces. - 4.3.10.2.6.2 Pneumatic tubing for control systems shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1820, Standard for Safety Fire Test of
Pneumatic Tubing for Flame and Smoke Characteristics. - 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway. - 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3. - 4.3.10.2.6.7 Smoke detectors shall not be required to meet the provisions of this section. - 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows: - (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides - (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials - 2. Test methods: ASTM E84, UL 723, or NFPA 255. - 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For condensation control insulation, no thickness adjustment need be made. - 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state. - C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material. # 1.4 SUBMITTALS A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. #### B. Shop Drawings: - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications. - a. Insulation materials: Specify each type used and state surface burning characteristics. - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment. - c. Insulation accessory materials: Each type used. - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation. - e. Make reference to applicable specification paragraph numbers for coordination. ## C. Samples: - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types. - 2. Each type of facing and jacket: Minimum size 100 mm (4 inches square). - 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic. ## 1.5 STORAGE AND HANDLING OF MATERIAL Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements. #### 1.6 APPLICABLE PUBLICATIONS A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. | В. | Federal Specifications | (Fed. Spec.): | |----|--------------------------|--| | | L-P-535E (2)-91 | .Plastic Sheet (Sheeting): Plastic Strip; Poly | | | | (Vinyl Chloride) and Poly (Vinyl Chloride - | | | | Vinyl Acetate), Rigid. | | C. | Military Specifications | (Mil. Spec.): | | | MIL-A-3316C (2)-90 | .Adhesives, Fire-Resistant, Thermal Insulation | | | MIL-A-24179A (1)-87 | .Adhesive, Flexible Unicellular-Plastic | | | | Thermal Insulation | | | MIL-C-19565C (1)-88 | .Coating Compounds, Thermal Insulation, Fire-and | | | | Water-Resistant, Vapor-Barrier | | | MIL-C-20079H-87 | .Cloth, Glass; Tape, Textile Glass; and Thread, | | | | Glass and Wire-Reinforced Glass | | D. | American Society for Tes | sting and Materials (ASTM): | | | A167-99 | .Standard Specification for Stainless and | | | | Heat-Resisting Chromium-Nickel Steel Plate, | | | | Sheet, and Strip | | | B209-04 | .Standard Specification for Aluminum and | | | | Aluminum-Alloy Sheet and Plate | | | C411-97 | .Standard test method for Hot-Surface | | | | Performance of High-Temperature Thermal | | | | Insulation | | | C449-00 | .Standard Specification for Mineral Fiber | | | | Hydraulic-Setting Thermal Insulating and | | | | Finishing Cement | | | C533-04 | .Standard Specification for Calcium Silicate | | | | Block and Pipe Thermal Insulation | | | C534-05 | .Standard Specification for Preformed Flexible | | | | Elastomeric Cellular Thermal Insulation in | | | | Sheet and Tubular Form | | | C547-06 | Standard Specification for Mineral Fiber pipe | | | | Insulation | | | C552-03 | .Standard Specification for Cellular Glass | | | | Thermal Insulation | | | C553-02 | Standard Specification for Mineral Fiber | | | | Blanket Thermal Insulation for Commercial and | | | | Industrial Applications | | | C585-90Standard Practice for Inner and Outer Diameters | |----|--| | | of Rigid Thermal Insulation for Nominal Sizes | | | of Pipe and Tubing (NPS System) R (1998) | | | C612-04Standard Specification for Mineral Fiber Block | | | and Board Thermal Insulation | | | C1126-04Standard Specification for Faced or Unfaced | | | Rigid Cellular Phenolic Thermal Insulation | | | C1136-06Standard Specification for Flexible, Low | | | Permeance Vapor Retarders for Thermal | | | Insulation | | | D1668-97a (2006)Standard Specification for Glass Fabrics (Woven | | | and Treated) for Roofing and Waterproofing | | | E84-06Standard Test Method for Surface Burning | | | Characteristics of Building | | | Materials | | | Ell9-05aStandard Test Method for Fire Tests of Building | | | Construction and Materials | | | E136-04Standard Test Methods for Behavior of Materials | | | in a Vertical Tube Furnace at 750 degrees C | | | (1380 F) | | Ε. | National Fire Protection Association (NFPA): | | | 90A-02Installation of Air Conditioning and | | | | | | Ventilating Systems | | | Ventilating Systems 96-04Standards for Ventilation Control and Fire | | | | | | 96-04Standards for Ventilation Control and Fire | | | 96-04Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations | | | 96-04Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-06Life Safety Code | | | 96-04 | | | 96-04 | | F. | 96-04 Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-06 Life Safety Code 251-06 Standard methods of Tests of Fire Endurance of Building Construction Materials 255-06 Standard Method of tests of Surface Burning | | F. | 96-04 Standards for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-06 Life Safety Code 251-06 Standard methods of Tests of Fire Endurance of Building Construction Materials 255-06 Standard Method of tests of Surface Burning Characteristics of Building Materials | | F. | 96-04 | | F. | 96-04 | | | 96-04 | | | 96-04 | | | 96-04 | #### PART 2 - PRODUCTS #### 2.1 MINERAL FIBER - A. ASTM C612 (Board, Block), Class 1 or 2, k = 0.037 Watt per meter, per degree C (0.26), external insulation for temperatures up to 204 degrees C (400 degrees F). - B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 kg/m 3 (2 pcf), k = 0.04 (0.27) //, for use at temperatures up to 204 degrees C (400 degrees F) - C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, $k = 0.037 \ (0.26)$ for use at temperatures 230 degrees C (450 degrees F). ## 2.2 MINERAL WOOL OR REFRACTORY FIBER A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F). #### 2.3 RIGID CELLULAR PHENOLIC FOAM - A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15), for temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service jacket with polyvinyl chloride premolded fitting covering. - B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.021 (0.15), for temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, vapor retarder and all service jacket. #### 2.4 CELLULAR GLASS CLOSED-CELL - A. Comply with Standard ASTM C177, C518, density 120 kg/m 3 (7.5 pcf) nominal, k = 0.033 (0.29) at 0 degrees C (75 degrees F). - B. Pipe insulation for temperatures up to 200 degrees C (400 degrees F). #### 2.5 POLYISOCYANURATE CLOSED-CELL RIGID - A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19), for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service jacket vapor retarder with polyvinyl chloride premolded fitting covers. - B. Equipment and duct insulation, ASTM C 591, type IV, K=0.027(0.19), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket. #### 2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL A. ASTM C177, C518, k = 0.039 Watt per meter, per degree C (0.27), at 24 degrees C (75 degrees F), flame spread
not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required. ### 2.7 INSULATION FACINGS AND JACKETS - A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing. - B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 5 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 100 mm (4 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive. - C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment. - D. Factory composite materials may be used provided that they have been tested and certified by the manufacturer. - E. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. #### 2.8 PIPE COVERING PROTECTION SADDLES A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf). | Nominal Pipe Size and Accessor | ries Material (Insert Blocks) | |--------------------------------|-------------------------------| | Nominal Pipe Size mm (inches) | Insert Blocks mm (inches) | | Up through 125 (5) | 150 (6) long | | 150 (6) | 150 (6) long | | Nominal Pipe Size and Accessor | ries Material (Insert Blocks) | |---------------------------------|-------------------------------| | Nominal Pipe Size mm (inches) | Insert Blocks mm (inches) | | 200 (8), 250 (10), 300 (12) | 225 (9) long | | 350 (14), 400 (16) | 300 (12) long | | 450 through 600 (18 through 24) | 350 (14) long | B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf). #### 2.9 ADHESIVE, MASTIC, CEMENT - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation. - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces. - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use. - D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use. - E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use. - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement. - G. Other: Insulation manufacturers' published recommendations. #### 2.10 MECHANICAL FASTENERS - A. Pins, anchors: Welded pins, or metal or nylon anchors with tin-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer. - B. Staples: Outward clinching monel or stainless steel. - C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy. - D. Bands: 20 mm (3/4 inch) nominal width, brass, galvanized steel, aluminum or stainless steel. # 2.11 REINFORCEMENT AND FINISHES - A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated). - B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1. - C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer. - D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel. - E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper. - F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape. #### 2.12 FIRESTOPPING MATERIAL Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING. #### 2.13 FLAME AND SMOKE Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance". ## PART 3 - EXECUTION #### 3.1 GENERAL REQUIREMENTS - A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed. - B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit. - C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification. - D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches). - E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation. - F. Construct insulation on parts of equipment such as chilled water pumps that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. - G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material. - H. HVAC work not to be insulated: - 1. Internally insulated ductwork and air handling units. - 2. Exhaust air ducts and plenums, and ventilation exhaust air shafts. - 3. In hot piping: Unions, flexible connectors, control valves, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items. - 4. Specialties: - a. Control valves-water and steam - b. Strainers under 65 mm (2-1/2 inch) pipe size - I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage. - J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications. - K. Firestop Pipe and Duct insulation: - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING. - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following: - a. Pipe risers through floors - b. Pipe or duct chase walls and floors - c. Smoke partitions - d. Fire partitions #### 3.2 INSULATION INSTALLATION ## A. Mineral Fiber Board: 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips. ## 2. Plain board: - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on
flat surfaces. Use corner beads to protect edges of insulation. - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish. - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface. - d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket - material. Fill void space in enclosure with flexible mineral fiber insulation. - 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical equipment rooms: - a. // 40 mm (1-1/2 inch) // 50 mm (2 inch) // thick insulation faced with ASJ (white all service jacket): Supply air duct // unlined air handling units // and afterfilter housing. - b. // 25 mm (1 inch) // 40 mm (1-1/2 inch) // thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing. - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ. - 4. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ. - a. Chilled water pumps #### B. Flexible Mineral Fiber Blanket: - 1. Adhere insulation to metal with 100 mm (4 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required. - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct. - 3. Concealed supply air ductwork. - a. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK. - 4. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK. // - 5. Exhaust air branch duct from autopsy refrigerator to main duct: 40 mm (1-1/2 inch) thick insulation faced with FSK. - C. Molded Mineral Fiber Pipe and Tubing Covering: - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable. - 2. Contractor's options for fitting, flange and valve insulation: - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more. - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape. - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic. - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least $50\ \mathrm{mm}$ (2 inches). - 3. Nominal thickness in millimeters and inches specified in table below, for piping above ground: | Nominal Thickness of | Molded Mi | neral Fiber | Insulation | on | |-----------------------|----------------|-------------------|------------|------------------| | Nominal Pipe Size, | 25 | 32- 75
(1-1/4- | 100-150 | 200 | | millimeters (inches): | (1) &
below | 3) | (4-6) | (8) and
above | | a. 122-177 degrees C | 50 (2.0) | 65 (2.5) | 90 | 90 (3.5) | | (251-350 F) (HPS, | | | (3.5) | | | MPS,) | | | | | | Nominal Thickness of Molded Mineral Fiber Insulation | | | | | | | | | | |--|-------------|----------|----------|------------------|--|--|--|--|--| | Nominal Pipe Size, | 25 | 32- 75 | 100-150 | 200 | | | | | | | millimeters (inches): | (1) & below | ' 1 3 1 | | (8) and
above | | | | | | | b. 100-121 degrees C | 25 (1.0) | 50 (2.0) | 50 | 50 (2.0) | | | | | | | LPS, HPR, MPR (212-250 | | | (2.0) | | | | | | | | degrees F) | | | | | | | | | | | c. 38-99 degrees C (100-
211 degrees F) (LPR) | 25 (1.0) | 40 (1.5) | 50 (2.0) | 50 (2.0) | | | | | | | | 15 (0.5) | _ | _ | - | | | | | | | | 15 (0.5) | _ | _ | - | | | | | | # D. Rigid Cellular Phenolic Foam: - 1. Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F). - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B - 3. Provide secure attachment facilities such as welding pins. - 4. Apply insulation with joints tightly drawn together - 5. Apply adhesives, coverings, neatly finished at fittings, and valves. - 6. Final installation shall be smooth, tight, neatly finished at all edges. - 7. Minimum thickness in millimeters (inches) specified in table below, for piping above ground: | Nominal Thickness of Rigid Closed-Cell Phenolic Foam Insulation | | | | | | | | | | |--|----------------------|--------------------|------------------|----------------|------------------------|--|--|--|--| | Nominal Pipe Size millimeters (inches): | 25
(1) &
below | 32-75
(1 1/4-3) | 100-150
(4-6) | 200-300 (8-12) | 350
(14) &
above | | | | | | 1. 100-121 degrees C (212-250 degrees F), LPS. | 15
(0.5) | 25 (1) | 25 (1) | | | | | | | | 2. 38-99 degrees C (100-
211 degrees F), LPR. | 15
(0.5) | 20 (0.75) | 25 (1) | | | | | | | | 3. 4-16 degrees C (40-60 degrees F), CH, CHR. | 20 (0.75) | 20 (0.75) | 25 (1) | 40
(1.5) | 50
(2.0) | | | | | | 4. 10 degrees C (50 degrees F) and less, RS for DX refrigerants. | 15 (0.5) | 20 (0.75) | | | | | | | | - 8. Condensation control insulation: Minimum 20 mm (0.75 inch) thick for all pipe sizes. - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms. #### E. Cellular Glass Insulation: 1. Pipe and tubing, covering nominal thickness in millimeters and inches as tabulated below for chilled water and refrigerant piping. | Nominal Thickness of | Cellular G | lass Insu | ılation | | |---|----------------|------------------|-------------------|------------------| | Millimeters (inches) | Thru 38 (11/2) | 50- 150
(2-6) | 200-300
(8-12) | over 350
(14) | | 1. 4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground) | 50 (2.0) | 80 (3.0) | 80 (3.0) | 100 (4.0) | | 2. 4-16 degrees C (40-60 degrees F) (CH and CHR outside chiller room) | 40 (1.5) | 50 (2.0) | 50 (2.0) | 65 (2.5) | - 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps. - F. Polyisocyanurate Closed-Cell Rigid Insulation: - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for piping, equipment and ductwork for temperature up to 149 degree C (300 degree F) provided insulation thickness requirement does not exceed 38 mm (1.5 inches). - 2. Install insulation, vapor retarder and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor retarder integrity. - 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications). - 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer. - 5. For cold applications, vapor retarder shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall be used to attach the vapor retarder or jacketing. No wire ties capable of penetrating the vapor retarder shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing. - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications. - 7. For cold applications, the vapor retarder on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor retarder adhesive tape. - 8. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated. - 9. Minimum thickness in millimeter
(inches) specified in table below, for piping: | Nominal Thickness of Polyisocyanurate Rigid Insulation | | | | | |---|---------------------|------------------------|------------------|----------------| | Nominal Pipe Size millimeters(inches): | 25(1)
&
below | 32-75
(1 1/4-
3) | 100-150
(4-6) | 200-300 (8-12) | | 1. 122-149 degree
C(251-300 degree
F) (HPS, MPS) | 40 (1.5) | | | | | 2. 100-121 degrees C
(211-250 degrees
F), HPR, MPR, LPS | 20 (0.75) | 40(1.5) | 40(1.5) | 40(1.50) | | 3. 38-99 degrees C
(100-211 degrees
F), LPR | 20 (0.75) | 25(1.0) | 40(1.5) | 40(1.50) | | | 20
(0.75) | | | | | 4. 4-16 degrees C (40-60 degrees F), CH, CHR relative humidity up to 80 percent | 25
(1.00 | 25 (1.0) | 40
(1.50 | 40(1.5) | | Nominal Thickness of Polyisocyanurate Rigid Insulation | | | | | | |---|----------------------------|----------|-------------|----------|--| | | 20
(0.75) | 25 (1.) | | | | | | 25
(1.00 | 25 (1.0) | 40
(1.5) | | | | 5. 4-16 degrees C(40-60 degrees F) CH, CHR relative humidity 80 to 90 percent or higher | 40
(1.50
40
(1.5) | 40 (1.5) | 40 (1.5) | 40 (1.5) | | | | 40
(1.5) | 40 (1.5) | 40
(1.5) | | | | 6. 10 degrees C (50
degrees F) and
less, RS for DX
refrigerants | 20 (0.75) | 25 (1.0) | | | | - 10. Condensation control insulation: Minimum 20 mm (0.75 inch) thick for all pipe sizes. - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms. - G. Flexible Elastomeric Cellular Thermal Insulation: - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. - 2. Pipe and tubing insulation: - a. Use proper size material. Do not stretch or strain insulation. - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape. - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only. - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in table below for piping above ground: | Nominal Thickness of Flexible Elastomeric Cellular Insulation | | | | | |---|-------------|------------------------|------------------|---------| | Nominal Pipe Size
millimeters (inches) | | 32-75
(1 1/4-
3) | 100-150
(4-6) | 200 (8) | | 4-16 degrees C (40-60
degrees F) (CH, CHR, GC,
GCR) | 25
(1.0) | 40 (1.5) | - | - | | a. Runouts to cooling coil condensate piping // | 20 (0.75) | 40 (1.5) | - | - | | b. RS for DX refrigeration | 25
(1.0) | 40
(1.5) | - | - | - - - E N D - - - #### **SECTION 23 08 00** #### COMMISSIONING OF HVAC SYSTEMS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 23. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. #### 1.3 SUMMARY - A. This Section includes requirements for commissioning the HVAC systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REOUIREMENTS. - B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance. - C. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. # 1.4 DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. #### 1.5 COMMISSIONED SYSTEMS - A. Commissioning of a system or systems specified in this Division is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent. - B. The following HVAC systems will be commissioned: - Air Handling Systems (Fans, motors, cooling coils and control valves, heating coils and control valves, filters, dampers, safeties such as smoke detectors or freezestats and damper end switches, controls, gages, and vibration isolation). - 2. Chilled Water Systems (Chilled water pump and motor, controls, instrumentation and safeties. - 3. Exhaust Fans (Fan, motor, Variable Speed Drives, controls and safeties). - 4. Direct Digital Control System (BACnet or similar Local Area Network (LAN), Operator Work Station hardware and software, building controller hardware and software, terminal unit controller hardware and software, all sequences of operation, system accuracy and response time). #### 1.6 SUBMITTALS - A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. ## PART 2 - PRODUCTS (NOT USED) #### PART 3 - EXECUTION #### 3.1 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. ## 3.2 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. #### 3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING: A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. #### 3.4 TRAINING OF VA PERSONNEL A. Training of the VA's operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Resident Engineer after submission and
approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements. ---- END ---- # SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Extend the existing Johnson Controls Energy Management System as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty. - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password. - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA. - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol. - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules. - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, - handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems. - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies. - 5. The control system shall accommodate as many Engineering Control Center(s) and the control system shall accommodate as many web-based Users simultaneously, and the access to the system should be limited only by operator password. - B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following: - 1. Control valves. - 2. Flow switches. - 3. Flow meters. - 4. Sensor wells and sockets in piping. - 5. Terminal unit controllers. - C. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following: - 1. Fire alarm systems. If zoned fire alarm is required by the project-specific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored. - 2. Unitary HVAC equipment controls. These include: - a. //Discharge temperature control.// - b. //Flowrate control.// - c. //Setpoint reset.// - d. //Status alarm.// - 3. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway. - D. Responsibility Table: | Work/Item/System | Furnish | Install | Low
Voltage
Wiring | Line
Power | |--|----------|----------|--------------------------|---------------| | Control system low voltage and communication wiring | 23 09 23 | 23 09 23 | 23 09 23 | N/A | | LAN conduits and raceway | 23 09 23 | 23 09 23 | N/A | N/A | | Automatic dampers (not furnished with equipment) | 23 09 23 | 23 | N/A | N/A | | Automatic damper actuators | 23 09 23 | 23 09 23 | 23 09 23 | 23 09 23 | | Manual valves | 23 | 23 | N/A | N/A | | Automatic valves | 23 09 23 | 23 | 23 09 23 | 23 09 23 | | Pipe insertion devices and taps, flow and pressure stations. | 23 | 23 | N/A | N/A | | Thermowells | 23 09 23 | 23 | N/A | N/A | | Current Switches | 23 09 23 | 23 09 23 | 23 09 23 | N/A | | Control Relays | 23 09 23 | 23 09 23 | 23 09 23 | N/A | | All control system nodes, equipment, housings, | 23 09 23 | 23 09 23 | 23 09 23 | 26 | | VFDs | 23 09 23 | 26 | 23 09 23 | 26 | | Packaged RTU space-mounted controls (not furnished with equipment) | 23 09 23 | 23 09 23 | 23 09 23 | 26 | | Packaged RTU unit-mounted controls (not furnished with equipment) | 23 09 23 | 23 09 23 | 23 09 23 | 26 | | Starters, HOA switches | 23 | 23 | N/A | 26 | E. This facility's existing direct-digital control system is manufactured by Johnson Controls The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work. - Remove existing pneumatic controls, tubing system ECC, communications controllers, etc. Replace with new DDC (and pneumatic if applicable) controls compliant with this Section of the technical specifications. - 2. Provide a new BACnet ECC, communications network, and controllers. Provide a programmable internetworking gateway allowing for real-time communication between the existing direct-digital control system and the new BACnet control system. Real-time communication shall provide all object properties and read/write services shown on VA-approved interoperability schedules. The contractor administered by this Section of the technical specifications shall provide all necessary investigation and site-specific programming to execute the interoperability schedules. - a. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified. - F. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA. #### 1.2 RELATED WORK - A. Section 23 21 13, Hydronic Piping. - B. Section 23 22 13, Steam and Condensate Heating Piping. - C. Section 23 31 00, HVAC Ducts and Casings. - D. Section 23 73 00, Indoor Central-Station Air-Handling Units. Units. - E. Section 26 05 11, Requirements for Electrical Installations. - F. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables #### 1.2 DEFINITION - A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps. - B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message. - C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc. - D. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network. - E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number. - F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies. - G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers. - H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters. - I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network. - J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or
more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork. - K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International. - L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one - bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit). - M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level. - N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels. - O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment. - P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls - Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap). - R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices. - S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance. - T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device. - U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system. - V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are - generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions. - W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data. - X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system. - Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange. - Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer. - AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator. - BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation. - CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables. - DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip. - EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side. - FF. GIF: Abbreviation of Graphic interchange format. - GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment. - HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks. - II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc. - JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery. - KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard. - LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information. - MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol. - NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication. - OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system. - PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork. - QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects. - RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device. - SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties. - TT. Operating system (OS): Software, which controls the execution of computer application programs. - UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop. - VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit. - WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices. - XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS. - YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint. - ZZ. Repeater: A network component that connects two or more physical segments at the physical layer. - AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN. - BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system. - CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system. # 1.4 QUALITY ASSURANCE A. Criteria: - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity. - 2. Equipment
and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use. - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation. - 4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems. - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier. - 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor. ## B. Codes and Standards: - 1. All work shall conform to the applicable Codes and Standards. - 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled. #### 1.5 PERFORMANCE - A. The system shall conform to the following: - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request. - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention. - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds. - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds. - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds. - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control. - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other. - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency. 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system: | Measured Variable | Reported Accuracy | |-----------------------------------|---------------------------| | Space temperature | ±0.5°C (±1°F) | | Ducted air temperature | ±0.5°C [±1°F] | | Outdoor air temperature | ±1.0°C [±2°F] | | Dew Point | ±1.5°C [±3°F] | | Water temperature | ±0.5°C [±1°F] | | Relative humidity | ±2% RH | | Water flow | ±1% of reading | | Air flow (terminal) | ±10% of reading | | Air flow (measuring stations) | ±5% of reading | | Carbon Monoxide (CO) | ±5% of reading | | Carbon Dioxide (CO ₂) | ±50 ppm | | Air pressure (ducts) | ±25 Pa [±0.1"w.c.] | | Air pressure (space) | ±0.3 Pa [±0.001"w.c.] | | Water pressure | ±2% of full scale *Note 1 | | Electrical Power | ±0.5% of reading | Note 1: for both absolute and differential pressure 10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances: | Controlled Variable | Control Accuracy | Range of Medium | |---------------------|-------------------------|---| | Air Pressure | ±50 Pa (±0.2 in. w.g.) | 0-1.5 kPa (0-6 in. w.g.) | | Air Pressure | ±3 Pa (±0.01 in. w.g.) | -25 to 25 Pa
(-0.1 to 0.1 in. w.g.) | | Airflow | ±10% of full scale | | | Space Temperature | ±1.0°C (±2.0°F) | | | Duct Temperature | ±1.5°C (±3°F) | | | Humidity | ±5% RH | | | Fluid Pressure | ±10 kPa (±1.5 psi) | 0-1 MPa (1-150 psi) | | Fluid Pressure | ±250 Pa (±1.0 in. w.g.) | 0-12.5 kPa
(0-50 in. w.g.)
differential | 11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings. #### 1.6 WARRANTY - A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21. - B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices. - C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported. - D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA. #### 1.7 SUBMITTALS - A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's literature and data for all components including the following: - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters. - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names. - 3. Control dampers and control valves schedule, including the size and pressure drop. - 4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished. - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent. - 6. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings. - 7. Color prints of proposed graphics with a list of points for display. - 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device. - 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system. - 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number. - 11. Riser diagrams of wiring between central control unit and all control panels. - 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices. - 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection. - 14. Quantities of submitted items
may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications. - C. Product Certificates: Compliance with Article, QUALITY ASSURANCE. - D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion. - E. As Built Control Drawings: - 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion. - 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion. - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above. - F. Operation and Maintenance (O/M) Manuals): - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS. - 2. Include the following documentation: - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables. - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures. - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software. - d. Complete troubleshooting procedures and guidelines for all systems. - e. Complete operating instructions for all systems. - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime. - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material. - h. Licenses, guaranty, and other pertaining documents for all equipment and systems. - G. Submit Performance Report to Resident Engineer prior to final inspection. #### 1.8 INSTRUCTIONS - A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below. - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 8 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA. - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel. - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training. - 4. Training shall be given by direct employees of the controls system subcontractor. #### 1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION) - A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35° C (65 to 90° F) at a relative humidity of 20 to 80% non-condensing. - B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65° C (-40 to 150° F). - C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage. - D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling. ## 1.10 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-08.....BACNET Building Automation and Control Networks C. American Society of Mechanical Engineers (ASME): B16.18-05......Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-05.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings. D. American Society of Testing Materials (ASTM): B32-04.....Standard Specification for Solder Metal | B88-03Standard Specifications for Seamless Copper Water Tube | |--| | B88M-05Standard Specification for Seamless Copper Water Tube (Metric) | | B280-03Standard Specification for Seamless Copper Tub
for Air-Conditioning and Refrigeration Field
Service | | D2737-03Standard Specification for Polyethylene (PE) Plastic Tubing | | Federal Communication Commission (FCC): | Ε. Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices. F. Institute of Electrical and Electronic Engineers (IEEE): | 802.3-05Information Technology-Telecommunications and | |---| | Information Exchange between Systems-Local and | | Metropolitan Area Networks- Specific | | Requirements-Part 3: Carrier Sense Multiple | | Access with Collision Detection (CSMA/CD) | | Access method and Physical Layer Specifications | G. National Fire Protection Association (NFPA): | 70-08 | ational Ele | ectric Code | | | |----------|-------------|----------------|----|------------------| | 90A-09st | andard for | r Installation | of | Air-Conditioning | | ar | nd Ventilat | tion Systems | | | H. Underwriter Laboratories Inc (UL): | 94-06Tests for Flammability of Plastic Materials for | |--| | Parts and Devices and Appliances | | 294-05Access Control System Units | | 486A/486B-04Wire Connectors | | 555S-06Standard for Smoke Dampers | | 916-07Energy Management Equipment | | 1076-05 | # PART 2 - PRODUCTS ## 2.1 MATERIALS A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract. ## 2.2 CONTROLS SYSTEM ARCHITECTURE # A. General - 1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements. - 2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major - manufacturers available through normal PC and computer vendor channels not "Clones" assembled by a third-party subcontractor. - 3. The networks shall, at minimum, comprise, as necessary, the following: - a. A fixed ECC and a portable operator's terminal. - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors. - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment. - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment. - e. Addressable elements, sensors, transducers and end devices. - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents. - g. Other components required for a complete and working Control Systems as specified. - B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents. ## C. Network Architecture - 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec. - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA. ### D. Third Party Interfaces: - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades. - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration. #### 2.3 COMMUNICATION - A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard
135-2008, BACnet. - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP. - 2. The ARCNET data link / physical protocol may be used in new BACnet sub-networks in VA non-healthcare and non-lab (i.e., business and cemetery) facilities. - 3. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities. - B. Each controller shall have a communication port for connection to an operator interface. - C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D. - D. Internetwork operator interface and value passing shall be transparent to internetwork architecture. - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller. - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address. - E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions. - F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable. # 2.4 ENGINEERING CONTROL CENTER (ECC) - A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information. - B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J. - C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device. - 1. ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive. - a. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store: - 1) All required operator workstation software - 2) A DDC database at least twice the size of the delivered system database - 3) One year of trend data based on the points specified to be trended at their specified trend intervals. ## b. Real-time clock: 1) Accuracy: Plus or minus 1 minute per month. - 2) Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software. - 3) Clock shall function for one year without power. - 4) Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory. - c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control. - d. Parallel port: Enhanced. - e. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions. - f. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, noninterlaced, and a maximum dot pitch of 0.28 mm. - g. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154. - h. Mouse: Standard, compatible with installed software. - i. Removable disk storage: Include the following, each with appropriate controller: - 1) Minimum 1 TB removable hard disk, maximum average access time of 10 ms. - j. Network interface card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector. - Cable modem: 42.88 MBit/s, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity. - 3. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module. - 4. Auto-dial modem: 56,600 bps, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction, and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68. 5. Audible Alarm: Manufacturer's standard. #### 6. Printers: - a. If not already part of the ATC system, provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the ECC through a USB interface. - 1) If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler. - 2) RAM: 512 MB, minimum. - 3) Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white). - 4) Paper Handling: Automatic sheet feeder with 250-sheet x 8.5 inch x 11 inch paper cassette and with automatic feed. #### 7. RS-232 ASCII Interface - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters. - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm. - c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software. - d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers. - e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire. - 1) NFPA 70, Type CMP. - 2) Flame Resistance: NFPA 262, Flame Test. - 8. Self-contained uninterruptible power supply (UPS): - a. Size: Provide a minimum of six hours of operation of ECC equipment, including two hours of alarm printer operation. - b. Batteries: Sealed, valve regulated, recombinant, lead calcium. - c. Accessories: - 1) Transient voltage suppression. - 2) Input-harmonics reduction. - 3) Rectifier/charger. - 4) Battery disconnect device. - 5) Static bypass transfer switch. - 6) Internal maintenance bypass/isolation switch. - 7) External maintenance bypass/isolation switch. - 8) Output isolation transformer. - 9) Remote UPS monitoring. - 10) Battery monitoring. - 11) Remote battery monitoring. #### D. ECC Software: - 1. Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator. - 2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system. - 3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance. - 4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows XP, Windows System 7, Linux, and UNIX. - 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic
objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object. - 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD. - 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program. - 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software. - 9. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection. - 10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and - other Windows based software programs, while concurrently on-line system alarms and monitoring information. - 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the relevant data for that particular screen. Additional help information shall be available through the use of hypertext. - 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes. - 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum: - a. Point database editing, storage and downloading of controller databases. - b. Scheduling and override of building environmental control systems. - c. Collection and analysis of historical data. - d. Alarm reporting, routing, messaging, and acknowledgement. - e. Definition and construction of dynamic color graphic displays. - f. Real-time graphical viewing and control of environment. - g. Scheduling trend reports. - h. Program editing. - i. Operating activity log and system security. - j. Transfer data to third party software. - 14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously: - a. Dynamic color graphics and graphic control. - b. Alarm management. - c. Event scheduling. - d. Dynamic trend definition and presentation. - e. Program and database editing. - f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time. ## 15. Graphic Displays: - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system. - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation. - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values. - d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable. - e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library. - f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided. - g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system. - 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports: - a. A general list of all selected points in the network. - b. List of all points in the alarm. - c. List of all points in the override status. - d. List of all disabled points. - e. List of all points currently locked out. - f. List of user accounts and password access levels. - g. List of weekly schedules. - h. List of holiday programming. - i. List of limits and dead bands. - j. Custom reports. - k. System diagnostic reports, including, list of digital controllers on the network. - 1. List of programs. - 19. Scheduling and Override: - a. Provide override access through menu selection from the graphical interface and through a function key. - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum: - 1) Weekly schedules. - 2) Zone schedules, minimum of 100 zones. - 3) Scheduling up to 365 days in advance. - 4) Scheduled reports to print at workstation. # 20. Collection and Analysis of Historical Data: - a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval. - b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility. - c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions. - d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point. ## 21. Alarm Management: - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point
type. - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the - time of its occurrence, while others shall display by clicking on their icon. - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms. - d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm. - e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk. - 22. Remote Communications: The system shall have the ability to dial out in the event of an alarm. Receivers shall include operator workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. # 23. System Configuration: - a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all other network devices to allow the development of global control strategies. - b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations. #### 2.5 PORTABLE OPERATOR'S TERMINAL (POT) A. If not part of the existing ATC system, provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required. - B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device. - 1. POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive. - C. Software: POT shall include software equal to the software on the ECC. #### 2.6 BACNET PROTOCOL ANALYZER A. If not part of the existing ATC system, for ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic. # 2.7 NETWORK AND DEVICE NAMING CONVENTION - A. Network Numbers - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work. - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where: - a. FFF = Facility code (see below) - b. NN = 00-99 This allows up to 100 networks per facility or building - B. Device Instances - 1. BACnet allows 4194305 unique devices instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where - a. FFF and N are as above and - b. DD = 00-99, this allows up to 100 devices per network. - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits. - 3. Facility code assignments: - 4. 000-400 Building/facility number - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399. #### C. Device Names 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP " or " B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same. # 2.8 BACNET DEVICES A. All BACnet Devices - controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website. - 1. BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted. - 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted. - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted. - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted. - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted. - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted. # 2.9 CONTROLLERS - A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements. - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements. - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers. - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms. - 4. Controllers that perform scheduling shall have a real-time clock. - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall: - a. assume a predetermined failure mode, and - b. generate an alarm notification. - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services. #### 7. Communication. - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers. - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal. - 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security
password shall be available to prevent unauthorized use of the keypad and display. - 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable. - 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours. - 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft). - B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service. - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network. - 2. Each B-ASC will contain sufficient I/O capacity to control the target system. - 3. Communication. - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers. - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown. - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable. - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss. - 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft). - 7. Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type. - C. Direct Digital Controller Software - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows. - 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC. - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters. - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely. - 5. All DDC control loops shall be able to utilize any of the following control modes: - a. Two position (on-off, slow-fast) control. - b. Proportional control. - c. Proportional plus integral (PI) control. - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program. - e. Automatic tuning of control loops. - 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided. - 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit. - a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality. - b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation. - c. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC. - d. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information: - 1) Time, day. - 2) Commands such as on, off, auto. - 3) Time delays between successive commands. - 4) Manual overriding of each schedule. - 5) Allow operator intervention. - e. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point. - f. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access. - g. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units. # 2.10 SENSORS (AIR, WATER AND STEAM) A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC. - B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems. - 1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors. - a. Duct sensors shall be rigid or averaging type as shown on
drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area. - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover. - 1) Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment. - 2) Psychiatric patient room sensor: sensor shall be flush with wall, shall not include an override switch, numerical temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless steel coverplate with an insulated back and security screws. - d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight. - e. Room security sensors shall have stainless steel cover plate with insulated back and security screws. - f. Wire: Twisted, shielded-pair cable. - g. Output Signal: 4-20 ma. - 2. Humidity Sensors: Bulk polymer sensing element type. - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability. - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH. - c. 4-20 ma continuous output signal. - C. Static Pressure Sensors: Non-directional, temperature compensated. - 1. 4-20 ma output signal. - 2. 0 to 5 inches wg for duct static pressure range. - 3. 0 to 0.25 inch wg for Building static pressure range. - D. Water flow sensors: - 1. Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve. - a. Pipe size: 3 to 24 inches. - b. Retractor: ASME threaded, non-rising stem type with hand wheel. - c. Mounting connection: 2 inch 150 PSI flange. - d. Sensor assembly: Design for expected water flow and pipe size. - e. Seal: Teflon (PTFE). - 2. Controller: - a. Integral to unit. - b. Locally display flow rate and total. - c. Output flow signal to BMCS: Digital pulse type. - 3. Performance: - a. Turndown: 20:1 - b. Response time: Adjustable from 1 to 100 seconds. - c. Power: 24 volt DC - 4. Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier. - E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digit display, for wall or panel mounting. - 1. Performance characteristics: - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100°F humidity. - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity. - c. Nominal range (turn down ratio): 10 to 1. - d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). // Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier //. - e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches). - f. Ambient temperature effects, less than 0.005 percent calibrated span per $^{\circ}C$ ($^{\circ}F$) temperature change. - g. RFI effect flow meter shall not be affected by RFI. - h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply. # F. Steam Flow Sensor/Transmitter: - 1. Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure. - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F). - b. Process conditions, 900 kPa (125 psig) saturated steam. - c. Turn down ratio, 20 to 1. - d. Output signal, 4-20 ma DC. - e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization. - 1) Ambient conditions, -20°C to 50°C (0°F-120°F), 0 95 percent non-condensing RH. - 2) Power supply, 120 VAC, 60 hertz or 24 VDC. - 3) Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed. - f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source. #### G. Flow switches: - 1. Shall be either paddle or differential pressure type. - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure. - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application. - H. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems. ## 2.11 CONTROL CABLES ## A. General: - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26. - 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified. - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service. - 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs. - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, - cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs. - 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less. - B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21. - C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00. - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media. - D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3. ## 2.12 THERMOSTATS AND HUMIDISTATS - A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating null or dead band cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have // polished or brushed aluminum // satin chrome // manufacturer's recommendation // finish, setpoint range and temperature display and external adjustment: - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules. - a. Public Space Thermostat: Public space thermostat
shall have a thermistor sensor and shall not have a visible means of set point - adjustment. Adjustment shall be via the digital controller to which it is connected. - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display. - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4. - d. Battery replacement without program loss. - B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch. - C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset. - D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable. # 2.13 FINAL CONTROL ELEMENTS AND OPERATORS - A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection. - B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off. - C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop. - Leakage: // Except as specified in subparagraph 2 below, // maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers. - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria. - 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required. - 4. Bearing shall be nylon, bronze sleeve or ball type. - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel. - 6. Maximum air velocity and pressure drop through free area the dampers: - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm). - b. Duct mounted damper: 600 meter per minute (2000 fpm). - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage). - D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section. #### E. Control Valves: - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig). - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections. - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections. - 4. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats. - 5. Flow characteristics: - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control. - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control. - c. Two-way 2-position valves shall be ball, gate or butterfly type. - 6. Maximum pressure drop: - a. Two position steam control: 20 percent of inlet gauge pressure. - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation). - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus. - 7. Two position water valves shall be line size. - F. Damper and Valve Operators and Relays: - 1. Pneumatic operators, spring return type with non-ferrous metal bellows or diaphragm of neoprene or other elastomer. Bellows or diaphragm shall be of sufficient size so that a change in operating pressure of not more than two (2) percent of the total motor operating pressure range will be required to start the valve or damper moving. Provide positive positioning or sequencing relays with adjustable operating range and starting point for operators sequenced with other operators to permit adjustment of control sequences, except for control valves in confined spaces in terminal units, which may use springs with range selected to provide necessary sequencing. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. - 2. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient closeoff torque. - a. Minimum valve closeoff pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches. - 3. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient closeoff torque. - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage. - 4. See drawings for required control operation. #### 2.14 AIR FLOW CONTROL - A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer. - B. Air Flow Measuring Station -- Pneumatic Type: - 1. Airflow measuring stations shall measure airflow by the pitot tube traverse method. Each unit shall consist of a network of static and total pressure sensors, factory positioned and connected in parallel, to produce an equalized velocity pressure. The measured velocity pressure converted to airflow (cfm) shall have accuracy within 2 percent of the full scale throughout the velocity range from 200 to 1,200 meter per minute (700 to 4,000 fpm). - 2. Airflow measuring stations shall consist of 16-gauge sheet metal casing, an aluminum air velocity treatment and air straightening section with an open face area not less than 97 percent and a total and static pressure sensing manifold made of copper. Each station shall contain noncombustible sensors which shall be incapable of producing toxic gases or fumes in the event of elevated duct temperatures. All interconnecting tubing shall be internal to the unit with the exception of one total pressure and one static pressure meter connection. - 3. Each air flow measuring station shall be installed to meet at least the manufacturer's minimum installation conditions and shall not amplify the sound level within the duct. The maximum resistance to airflow shall not exceed 0.3 times the velocity head for the duct stations and 0.6 times the velocity head for the fan stations. The - unit shall be suitable for continuous operation up to a temperature of 120°C (250°F). - 4. Differential pressure transducers shall measure and transmit pressure signals to the direct digital controller. - C. Air Flow Measuring Station -- Electronic Thermal Type: - 1. Air Flow Sensor Probe: - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array. - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire,
wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut. - 2. Air Flow Sensor Grid Array: - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage. - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material. - c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM). - 3. Electronics Panel: - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software. - b. Electronics Panel shall be A/C powered 120 VAC (or 24 VAC) and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals. - c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans. - d. Electronics Panel shall have the following: - 1) Minimum of 12-bit A/D conversion. - 2) Field adjustable digital primary output offset and gain. - 3) Airflow analog output scaling of 100 to 10,000 FPM. - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F). - 5) Analog output resolution (full scale output) of 0.025%. - e. All readings shall be in I.P. units. - 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows: | Probe Sensor Density | | |----------------------|--------------| | Area (sq.ft.) | Qty. Sensors | | <=1 | 2 | | >1 to <4 | 4 | | 4 to <8 | 6 | | 8 to <12 | 8 | | 12 to <16 | 12 | >=16 16 - a. Complete installation shall not exhibit more than ± 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within ± 0.25%. - D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure: - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required. - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller. - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode. - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset. - E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station. # PART 3 - EXECUTION #### 3.1 INSTALLATION #### A. General: - 1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation. - 2. Work Coordination: GENERAL CONDITIONS. - 3. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines. - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts. - 5. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation. - 6. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment. - 7. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing. - 8. Install equipment level and plum. # A. Electrical Wiring Installation: - 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs. - 2. Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling. - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, - miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section. - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers. - 5. Install all system components in accordance with local Building Code and National Electric Code. - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties. - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag. - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter. - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc. - 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed. - 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification. - 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation. ## C. Install Sensors and Controls: - 1. Temperature Sensors: - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools. - b. Calibrate sensors to accuracy specified, if not factory calibrated. - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor. - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor. - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors from contact with metal casings and coils using insulated standoffs. - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip. - g. All pipe mounted temperature sensors shall be installed in wells. - h. All wires attached to sensors shall
be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading. - i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity. ## 2. Pressure Sensors: - a. Install duct static pressure sensor tips facing directly downstream of airflow. - b. Install high-pressure side of the differential switch between the pump discharge and the check valve. - c. Install snubbers and isolation valves on steam pressure sensing devices. # 3. Actuators: - a. Mount and link damper and valve actuators according to manufacturer's written instructions. - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position. c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position. #### 4. Flow Switches: - a. Install flow switch according to manufacturer's written instructions. - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions. - c. Assure correct flow direction and alignment. - d. Mount in horizontal piping-flow switch on top of the pipe. ## D. Installation of network: ## 1. Ethernet: - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks. - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers. - 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system. # E. Installation of digital controllers and programming: - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units. - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use. - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index. - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided. 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list. #### 3.2 SYSTEM VALIDATION AND DEMONSTRATION A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system. ## B. Validation - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test. - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List. # C. Demonstration 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA. - 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. - 3. Make accessible , personnel to provide necessary adjustments and corrections to systems as directed by balancing agency. - 4. The following witnessed demonstrations of field control equipment shall be included: - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position. - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs. - c. Demonstrate the software ability to edit the control program offline. - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations. - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc. - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition. - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss. - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained. - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute. - 5. Witnessed demonstration of ECC functions shall consist of: - a. Running each specified report. - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes. - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics. - d. Execute digital and analog commands in graphic mode. - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum). - f. Demonstrate EMS performance via trend logs and command trace. - g. Demonstrate scan, update, and alarm responsiveness. - h. Demonstrate spreadsheet/curve plot software, and its integration with database. - i. Demonstrate on-line user guide, and help function and mail facility. - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics. - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen. - 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding. ---- END ---- # SEQUENCE OF OPERATION FOR HVAC CONTROLS # PART 1 - GENERAL #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. ## PART 2 - PRODUCTS N/A # PART 3 - EXECUTION # 3.1 SEQUENCE OF OPERATION - A. Make Up Air System-Serving Morgue Area - 1. Make up air unit shall consist of an outdoor air damper, supply fan, steam heating coil with face/bypass damper, chilled water cooling coil, steam humidifier and electric reheat coil. - 2. Johnson controls shall furnish and install a digital controller for operation of the make up air unit. The unit shall operate based upon schedule along with the associated exhaust fan. - 3. The occupied cycle is to be initialized by turning on of room lights. Upon initialization of the occupied cycle, the system shall operate as follows: - a. Exhaust fan shall be enabled. - b. Once status is proven via current sensing relay the outdoor air damper shall be commanded open. Once status is proven that the outdoor air damper is open via end switch the supply fan shall start. - c. When the outdoor air is below 60 degrees (Adj) and the supply fan is on and fan status is proven the steam coil shall be modulated to maintain a space temperature face and bypass damper shall be 100% open to the face. When the outdoor air is below 40 degrees the steam valve shall be open 100% and the face/bypass damper shall be modulated to maintain a space temperature. - d. When the outdoor air is above 60 degrees (Adj) the steam valve shall be closed, the face and bypass damper is to be in full bypass position, the supply fan is to be energized and when fan status is proven, the 2-way chilled water coil shall be modulated to maintain a space temperature. - e. Unit steam
humidifier valve is to be cycled open/closed to provide humidity to satisfy the room humidistat. - f. When the area served by this unit is above the desired humidity level, the chilled water coil and electric reheat coil shall be modulated and/or staged to provide dehumidification to satisfy the room humidistat and to maintain room temperature. Once the humidity levels are below an acceptable level the unit will return to its normal operation. - 4. The un-occupied cycle is to be initialized by turning off of room lights. Upon initialization of un-occupied cycle, the system is to function as follows: - a. The system is to be cycled to maintain un-occupied cycle temperature and humidity settings. - 5. System shutdown shall occur for the following: - Smoke is detected by the duct mounted smoke detector. - Outdoor air damper status shows closed. - 6. Exhaust fan variable frequency control: - a. Upon start-up of exhaust fan, it shall be controlled by a variable frequency drive, which is to receive its control from an air flow measuring station, to maintain the scheduled exhaust air flow. As the HEPA filter mounted in the exhaust air stream becomes loaded, the variable frequency drive is to ramp up to allow the exhaust fan to maintain the scheduled exhaust air quality as sensed by the airflow measuring station. # Project Points for Section H ``` Bo===Binary Out-----MAU Start/Stop Bo===Binary Out-----MAU OA Damper Bi===Binary In------MAU Fan Status Bi===Binary In------MAU OA Damp Status Ai===Analog In------MAU Discharge Temperature Ai===Analog In------MAU Room Temperature Ao===Analog Out-----MAU Steam Valve Ao===Analog Out-----MAU Face/Bypass Damper Ao===Analog Out-----MAU Electric Reheat Coil Ao===Analog Out-----MAU Chilled Water Coil Bo===Binary Out-----EF-1 Start/Stop Bo===Binary Out-----EF-1 Status Ao===Analog Out-----EF-1 Speed Ai===Analog In------Exhaust Air Flow Measuring Station ``` ---END--- # SECTION 23 21 13 HYDRONIC PIPING #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Water piping to connect HVAC equipment, including the following: - 1. Chilled water and drain piping. ## 1.2 RELATED WORK - A. Section 01 00 00, GENERAL REQUIREMENTS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23. - D. Section 23 21 23, HYDRONIC PUMPS: Pumps. - E. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Piping insulation. - F. Section 23 23 00, REFRIGERANT PIPING: Refrigerant piping and refrigerants. - G. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems. - H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators. # 1.3 QUALITY ASSURANCE - A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications. - B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old. - C. For mechanical pressed sealed fittings, only tools of fitting manufacturer shall be used. - D. Mechanical pressed fittings shall be installed by factory trained workers. - E. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components. - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability. ## 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Pipe and equipment supports. - 2. Pipe and tubing, with specification, class or type, and schedule. - 3. Pipe fittings, including miscellaneous adapters and special fittings. - 4. Flanges, gaskets and bolting. - 5. Grooved joint couplings and fittings. - 6. Valves of all types. - 7. Strainers. - 8. All specified hydronic system components. - 9. Water flow measuring devices. - 10. Gages. - 11. Thermometers and test wells. - C. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate. - D. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - E. As-Built Piping Diagrams: Provide drawing as follows for chilled water and other piping systems and equipment. - 1. One complete set of drawings in electronic Autocad and pdf format. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc. - B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): - B1.20.1-83(R2006)......Pipe Threads, General Purpose (Inch) B16.4-06...........Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02.........Cast Copper Alloy Solder joint Drainage - B40.100-05......Pressure Gauges and Gauge Attachments fittings - C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI): - 70-2-2006......Control Valve Seat Leakage | D. | American Society of Mec | hanical Engineers (ASME): | |----|--|---| | ٥. | | .Cast Iron Pipe Flanges and Flanged Fittings | | | | .Malleable Iron Threaded Fittings: Class 150 and | | | 2000 | 300 | | | D16 / 2006 | .Gray Iron Threaded Fittings: (Class 125 and | | | B10.4-2000 | | | | D16 F 2002 | 250) | | | B16.5-2003 | .Pipe Flanges and Flanged Fittings: NPS ½ | | | D16 0 0F | through NPS 24 Metric/Inch Standard | | | | .Factory Made Wrought Butt Welding Fittings | | | | .Forged Fittings, Socket Welding and Threaded | | | B16.18-01 | .Cast Copper Alloy Solder Joint Pressure | | | | Fittings | | | B16.22-01 | .Wrought Copper and Bronze Solder Joint Pressure | | | | Fittings. | | | B16.24-06 | .Cast Copper Alloy Pipe Flanges and Flanged | | | | Fittings | | | B16.39-06 | .Malleable Iron Threaded Pipe Unions | | | B16.42-06Ductile Iron Pipe Flanges and Flanged Fittings | | | | B31.1-08 | .Power Piping | | Ε. | . American Society for Testing and Materials (ASTM): | | | | A47/A47M-99 (2004)Ferritic Malleable Iron Castings | | | | A53/A53M-07Standard Specification for Pipe, Steel, Black | | | | | and Hot-Dipped, Zinc-Coated, Welded and | | | | Seamless | | | A106/A106M-08 | .Standard Specification for Seamless Carbon | | | | Steel Pipe for High-Temperature Service | | | A126-04 | .Standard Specification for Gray Iron Castings | | | | for Valves, Flanges, and Pipe Fittings | | | | | | | A183-03 | Standard Specification for Carbon Steel Track | | | A183-03 | Standard Specification for Carbon Steel Track Bolts and Nuts | | | | | | | | Bolts and Nuts | | | | Bolts and Nuts
Standard Specification for Steel Castings, | | | A216/A216M-08 | Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High | | | A216/A216M-08 | Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service | | | A216/A216M-08 | Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service Piping Fittings of Wrought Carbon Steel and | | | A216/A216M-08 | Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature | | | A216/A216M-08 | Bolts and Nuts Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service | | A536-84 (2004) | Standard Specification for Ductile Iron Castings | |----------------|--| | A615/A615M-08 | Deformed and Plain Carbon Steel Bars for | | | Concrete Reinforcement | | A653/A 653M-08 | Steel Sheet, Zinc-Coated (Galvanized) or Zinc- | | | Iron Alloy Coated (Galvannealed) By the Hot-Dip | | | Process | | вз2-08 | Standard Specification for Solder Metal | | В62-02 | Standard Specification for Composition Bronze or | | | Ounce Metal Castings | | B88-03 | Standard Specification for Seamless Copper Water | | | Tube | | B209-07 | Aluminum and Aluminum Alloy Sheet and Plate | | C177-04 | Standard Test Method for Steady State Heat Flux | | | Measurements and Thermal Transmission Properties | | | by Means of the Guarded Hot Plate Apparatus | | C478-09 | Precast Reinforced Concrete Manhole Sections | | C533-07 | Calcium Silicate Block and Pipe Thermal | | | Insulation | | C552-07 | Cellular Glass Thermal Insulation | | D3350-08 | Polyethylene Plastics Pipe and Fittings | | | Materials | | C591-08 | Unfaced Preformed Rigid Cellular | | | Polyisocyanurate Thermal Insulation | | D1784-08 | Rigid Poly (Vinyl Chloride) (PVC) Compounds and | | | Chlorinated Poly (Vinyl Chloride) (CPVC) | | | Compound | | D1785-06 | Poly (Vinyl Chloride0 (PVC) Plastic Pipe, | | | Schedules 40, 80 and 120 | | D2241-05 | Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe | | | (SDR Series) | | F439-06 | Standard Specification for Chlorinated Poly | | | (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, | | | Schedule 80 | | F441/F441M-02 | Standard Specification for Chlorinated Poly | | | (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules | | | 40 and 80 | | F477-08 | Elastomeric
Seals Gaskets) for Joining Plastic | | | Pipe | | | | | F. | American Water Works Ass | ociation (AWWA): | | |----|--|--|--| | | C110-08Ductile Iron and Grey Iron Fittings for Water | | | | | C203-02 | Coal Tar Protective Coatings and Linings for | | | | | Steel Water Pipe Lines Enamel and Tape Hot | | | | | Applied | | | G. | American Welding Society | (AWS): | | | | B2.1-02 | Standard Welding Procedure Specification | | | н. | Copper Development Assoc | iation, Inc. (CDA): | | | | CDA A4015-06 | Copper Tube Handbook | | | I. | Expansion Joint Manufact | urer's Association, Inc. (EJMA): | | | | EMJA-2003 | Expansion Joint Manufacturer's Association | | | | | Standards, Ninth Edition | | | J. | Manufacturers Standardiz | ation Society (MSS) of the Valve and Fitting | | | | Industry, Inc.: | | | | | SP-67-02a | Butterfly Valves | | | | | Gray Iron Gate Valves, Flanged and Threaded | | | | | Ends | | | | SP-71-05 | Gray Iron Swing Check Valves, Flanged and | | | | | Threaded Ends | | | | SP-80-08 | Bronze Gate, Globe, Angle and Check Valves | | | | SP-85-02 | Cast Iron Globe and Angle Valves, Flanged and | | | | | Threaded Ends | | | | SP-110-96 | Ball Valves Threaded, Socket-Welding, Solder | | | | | Joint, Grooved and Flared Ends | | | | SP-125-00 | Gray Iron and Ductile Iron In-line, Spring | | | | | Loaded, Center-Guided Check Valves | | | к. | National Sanitation Found | dation/American National Standards Institute, | | | | Inc. (NSF/ANSI): | | | | | 14-06 | Plastic Piping System Components and Related | | | | | Materials | | | | 50-2009a | Equipment for Swimming Pools, Spas, Hot Tubs | | | | | and other Recreational Water Facilities - | | | | | Evaluation criteria for materials, components, | | | | | products, equipment and systems for use at | | | | | recreational water facilities | | | | | Drinking Water System Components - Health | | | | | Effects | | | | | | | L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007 #### 1.6 SPARE PARTS A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility. #### PART 2 - PRODUCTS ## 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. #### 2.2 PIPE AND TUBING - A. Chilled Water: - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40. - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn. // Soft drawn tubing, 20 mm (3/4 inch) and larger, may be used for runouts routed under slab to floor mounted fan coil units. // - B. Cooling Coil Condensate Drain Piping: - 1. From air handling units: Copper water tube, ASTM B88, Type M, or schedule 40 PVC plastic piping. - C. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. # 2.3 FITTINGS FOR STEEL PIPE - A. 50 mm (2 inches) and Smaller: Screwed or welded joints. - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping. - 2. Forged steel, socket welding or threaded: ASME B16.11. - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable. - 4. Unions: ASME B16.39. - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut. #### 2.4 FITTINGS FOR COPPER TUBING - A. Joints: - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping. - 2. Contractor's Option: Mechanical press sealed fittings, double pressed type, NSF 50/61 approved, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements for up 65 - mm (2-1/2 inch) and below are optional for above ground water piping only. - 3. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. - B. Bronze Flanges and Flanged Fittings: ASME B16.24. - C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper. #### 2.5 FITTINGS FOR PLASTIC PIPING - A. Schedule 40, socket type for solvent welding. - B. Schedule 40 PVC drain piping: Drainage pattern. - C. Chemical feed piping for condenser water treatment: Chlorinated polyvinyl chloride (CPVC), Schedule 80, ASTM F439. #### 2.6 DIELECTRIC FITTINGS - A. Provide where copper tubing and ferrous metal pipe are joined. - B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39. - C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. - D. Temperature Rating, 99 degrees C (210 degrees F). - E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions. #### 2.7 SCREWED JOINTS - A. Pipe Thread: ANSI B1.20. - B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service. DESIGNER NOTE: The use of triple duty valves is not permitted. ## 2.8 VALVES - A. Asbestos packing is not acceptable. - B. All valves of the same type shall be products of a single manufacturer. ## C. Shut-Off Valves - 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2760 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation. - D. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size. - 1. Ball style valve. - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure. - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case. - E. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs: - 1. Gray iron (ASTM A126) or brass body rated 1205 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring. - 2. Brass or ferrous body designed for 2067 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement. - 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable. - 4. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case. #### 2.9 STRAINERS ## A. Y Type. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations. ## 2.10 GAGES, PRESSURE AND COMPOUND - A. ASME B40.100, Accuracy Grade 1A, (pressure for water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure. - B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. - C. Range of Gages: Provide range equal to at least 130 percent of normal operating range. #### 2.11 THERMOMETERS - A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading. - B. Case: Chrome plated brass or aluminum with enamel finish. - C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations. - D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation. - E. Scale ranges: - 1. Chilled Water: 0-38 degrees C (32-100 degrees F). ## 2.12 FIRESTOPPING MATERIAL Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. ## PART 3 - EXECUTION #### 3.1 GENERAL A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties. - B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress. - C. Support piping
securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat. - E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. - F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings. - G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side. - H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents. - I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as: - 1. Control valve bodies, pressure taps with valve, and wells for sensors. - J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area. - K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION. L. Where copper piping is connected to steel piping, provide dielectric connections. #### 3.2 PIPE JOINTS - A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection. - C. Solvent Welded Joints: As recommended by the manufacturer. ## 3.3 LEAK TESTING ABOVEGROUND PIPING - A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer. - B. An operating test at design pressure, and for hot systems, design maximum temperature. - C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices. # 3.4 FLUSHING AND CLEANING PIPING SYSTEMS - A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT. - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. - Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer. - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing. - 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour. ## 3.5 WATER TREATMENT - A. Install water treatment equipment and provide water treatment system piping. - B. Close and fill system with clean water as soon as possible after final flushing to minimize corrosion. - C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT. NOTE: Due to new system's small volume in comparison to the existing chilled water system's volume, no additional chemicals are required. - D. Utilize this activity, by arrangement with the Resident Engineer, for instructing VA operating personnel. ## 3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. B. Adjust red set hand on pressure gages to normal working pressure. - - - E N D - - - # SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING #### PART 1 - GENERAL #### 1.1 DESCRIPTION A. Steam and condensate piping inside buildings. #### 1.2 RELATED WORK - A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Piping insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION. - C. Heating Coils and Humidifiers: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS and SECTION 23 31 00, HVAC DUCTS AND CASING. - D. Temperature and pressure sensors and valve operators: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. ## 1.3 QUALITY ASSURANCE A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Pipe and equipment supports. - 2. Pipe and tubing, with specification, class or type, and schedule. - 3. Pipe fittings, including miscellaneous adapters and special fittings. - 4. Flanges, gaskets and bolting. - 5. Valves of all types. - 6. Strainers. - 7. All specified steam system components. - 8. Gages. - 9. Thermometers and test wells. - C. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - D. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other equipment. - 1. One set of reproducible drawings with AutoCAD files. #### 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI): - B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-2006......Gray Iron Threaded Fittings - C. American Society of Mechanical Engineers (ASME): - B16.1-2005.................Gray Iron Pipe Flanges and Flanged Fittings - B16.3-2006......Malleable Iron Threaded Fittings - B16.9-2007......Factory-Made Wrought Buttwelding Fittings - B16.11-2005.....Forged Fittings, Socket-Welding and Threaded - B16.14-91......Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads - B16.22-2001......Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings - B16.23-2002......Cast Copper Alloy Solder Joint Drainage Fittings - B16.24-2006...........Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 - B16.39-98......Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300 - B31.1-2007.....Power Piping - B31.9-2008.....Building Services Piping - B40.100-2005......Pressure Gauges and Gauge Attachments - Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1 - D. American Society for Testing and Materials (ASTM): - A47-99.....Ferritic Malleable Iron Castings - A53-2007......Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, - Welded and Seamless - A106-2008......Seamless Carbon Steel Pipe for High-Temperature Service - A126-2004......Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings - A181-2006......Carbon Steel Forgings, for General-Purpose - Piping - A183-2003 Carbon
Steel Track Bolts and Nuts | | A216-2008 | Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service | |---|-----------------------------|--| | | A285-01 | Pressure Vessel Plates, Carbon Steel, Low-and-
Intermediate-Tensile Strength | | | A307-2007 | Carbon Steel Bolts and Studs, 60,000 PSI Tensile
Strength | | | A516-2006 | Pressure Vessel Plates, Carbon Steel, for
Moderate-and- Lower Temperature Service | | | A536-84(2004)e1
B32-2008 | Standard Specification for Ductile Iron Castings
Solder Metal | | | B61-2008 | Steam or Valve Bronze Castings | | | B62-2009 | Composition Bronze or Ounce Metal Castings | | | B88-2003 | Seamless Copper Water Tube | | | F439-06 | Socket-Type Chlorinated Poly (Vinyl Chloride) | | | | (CPVC) Plastic Pipe Fittings, Schedule 80 | | | F441-02(2008) | Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 | | E | . American Welding Societ | y (AWS): | | | A5.8-2004 | .Filler Metals for Brazing and Braze Welding | | | B2.1-00 | .Welding Procedure and Performance Qualifications | | F | . Manufacturers Standardi | zation Society (MSS) of the Valve and Fitting | | | Industry, Inc.: | | | | SP-67-95 | .Butterfly Valves | | | SP-70-98 | .Cast Iron Gate Valves, Flanged and Threaded Ends | | | SP-71-97 | .Gray Iron Swing Check Valves, Flanged and | | | | | | | | Threaded Ends | | | SP-72-99 | Threaded Ends .Ball Valves with Flanged or Butt-Welding Ends | | | SP-72-99 | | | | | .Ball Valves with Flanged or Butt-Welding Ends | | | SP-78-98 | .Ball Valves with Flanged or Butt-Welding Ends
for General Service | | | SP-78-98 | .Ball Valves with Flanged or Butt-Welding Ends
for General Service
.Cast Iron Plug Valves, Flanged and Threaded Ends | | | SP-78-98 | .Ball Valves with Flanged or Butt-Welding Ends
for General Service
.Cast Iron Plug Valves, Flanged and Threaded Ends
.Bronze Gate, Globe, Angle and Check Valves | | G | SP-78-98 | .Ball Valves with Flanged or Butt-Welding Ends
for General Service
.Cast Iron Plug Valves, Flanged and Threaded Ends
.Bronze Gate, Globe, Angle and Check Valves
.Cast Iron Globe and Angle Valves, Flanged and
Threaded Ends | | G | SP-78-98 | .Ball Valves with Flanged or Butt-Welding Ends
for General Service
.Cast Iron Plug Valves, Flanged and Threaded Ends
.Bronze Gate, Globe, Angle and Check Valves
.Cast Iron Globe and Angle Valves, Flanged and
Threaded Ends | | G | SP-78-98 | .Ball Valves with Flanged or Butt-Welding Ends for General Service .Cast Iron Plug Valves, Flanged and Threaded Ends .Bronze Gate, Globe, Angle and Check Valves .Cast Iron Globe and Angle Valves, Flanged and Threaded Ends (Mil. Spec.): | - H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves - I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000 #### PART 2 - PRODUCTS # 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. #### 2.2 PIPE AND TUBING - A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40. - B. Steam Condensate Piping: - 1. Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn. - 2. All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80. #### 2.3 FITTINGS FOR STEEL PIPE - A. 50 mm (2 inches) and Smaller: Screwed or welded. - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping. - 2. Forged steel, socket welding or threaded: ASME B16.11. - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable. - 4. Unions: ASME B16.39. - 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required. - B. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections. #### 2.4 FITTINGS FOR COPPER TUBING A. Solder Joint: - 1. Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping. - B. Bronze Flanges and Flanged Fittings: ASME B16.24. - C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper. #### 2.5 DIELECTRIC FITTINGS - A. Provide where copper tubing and ferrous metal pipe are joined. - B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39. - C. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service. - D. Contractor's option: On pipe sizes 2" and smaller, screwed end brass gate valves // or dielectric nipples // may be used in lieu of dielectric unions. #### 2.6 SCREWED JOINTS - A. Pipe Thread: ANSI B1.20. - B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service. #### 2.7 VALVES - A. Asbestos packing is not acceptable. - B. All valves of the same type shall be products of a single manufacturer. - C. Shut-Off Valves - 1. Gate Valves: - a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 - D. Globe and Angle Valves: - 1. Globe Valves: - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150lb.) Globe valves shall be union bonnet with metal plug type disc. - 2. Angle Valves - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150lb.) Angle valves shall be union bonnet with metal plug type disc. - E. Swing Check Valves - 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 psig), 45 degree swing disc. # 2.8 STRAINERS - A. Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service. - B. All Other Services: Rated 861 kPa (125 psig) saturated steam. - 1. 50 mm (2 inches) and smaller: Cast iron or bronze. - C. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: - 1. 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids. - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (0.125 inch) diameter perforations for liquids. #### 2.9 STEAM SYSTEM COMPONENTS - A. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines. - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows: - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver. - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line. - 2. Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be 5. Mechanism: Brass, stainless steel or corrosion resistant alloy. rated for the pressure upstream of the PRV supplying the system. - 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal. - 4. Valves and seats: Suitable hardened corrosion resistant alloy. - 6. Floats: Stainless steel. - 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables. - B. Thermostatic Air Vent (Steam): Brass or iron body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure. #### C. Steam Humidifiers: 1. Steam separator type that discharges steam into the air stream through a steam jacketed distribution manifold or dispersion tube. Humidifiers shall be complete with Y-type steam supply strainer; modulating, normally closed steam control valve; normally closed condensate temperature switch; and manufacturer's standard steam trap. - 2. Steam separator: Stainless steel or cast iron. - 3. Distribution manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions: - a. Duct section height exceeds 900 mm (36 inches). - b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute). - b. If within 900 mm (3 feet) upstream of fan, damper or pre-filter. - d. If within 3000 mm (10 feet) upstream of after-filter. ## 2.10 GAGES, PRESSURE AND COMPOUND - A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify
grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure. - B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages. - C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range: | Low pressure steam and steam condensate to 103 kPa(15 psig) | 0 to 207 kPa (30 psig). | |--|--------------------------| | Medium pressure steam and steam condensate nominal 413 kPa (60 psig) | 0 to 689 kPa (100 psig). | #### 2.11 PRESSURE/TEMPERATURE TEST PROVISIONS - A. Provide one each of the following test items to the Resident Engineer: - 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example. - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range. - 3. 0 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case. #### 2.12 FIRESTOPPING MATERIAL A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. #### PART 3 - EXECUTION #### 3.1 GENERAL - A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, coils, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties. - B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress. - C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat. - E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. - F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings. - G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side. - H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as: - 1. Flow elements (orifice unions), control valve bodies, pressure taps with valve, and wells for sensors. - I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION. - J. Where copper piping is connected to steel piping, provide dielectric connections. ## 3.2 PIPE JOINTS - A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection. - C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange. ## 3.3 STEAM TRAP PIPING A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping. # 3.4 LEAK TESTING - A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements. - B. An operating test at design pressure, and for hot systems, design maximum temperature. - C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices. #### 3.5 FLUSHING AND CLEANING PIPING SYSTEMS A. Steam and Condensate Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation. # 3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION - A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - B. Adjust red set hand on pressure gages to normal working pressure. - - - E N D - - - # SECTION 23 23 00 REFRIGERANT PIPING #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Field refrigerant piping for mortuary refrigerators, including required pipe insulation. - B. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation. ## C. Definitions: - 1. Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat. - a. Low side means the parts of a refrigerating system subjected to evaporator pressure. - b. High side means the parts of a refrigerating system subjected to condenser pressure. - 2. Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts. ### 1.2 RELATED WORK - A. Section 11 78 13, MORTUARY REFRIGERATORS: Piping requirements for freezers and refrigerators. - B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23. - C. Section 23 07 11, HVAC INSULATION: Requirements for piping insulation. ## 1.3 QUALITY ASSURANCE - A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of - every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle. - C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components. - D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves." #### 1.4 SUBMITTALS - A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Shop Drawings: - 1. Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below: - a. Tubing and fittings - b. Valves - c. Strainers - d. Moisture-liquid indicators - e. Filter-driers - f. Flexible metal hose - g. Liquid-suction interchanges - h. Pipe and equipment supports - i. Refrigerant and oil - j. Soldering and brazing materials - 2. Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details. - C. Certification: Copies of certificates for brazing procedure, performance qualification record and list of welders' names and symbols. #### 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002)......Standard for Refrigerant Liquid Receivers 730-2005......Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers 750-2007......Thermostatic Refrigerant Expansion Valves
760-2007......Performance Rating of Solenoid Valves for Use with Volatile Refrigerants C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE): ANSI/ASHRAE 15-2007.....Safety Standard for Refrigeration Systems (ANSI) ANSI/ASHRAE 17-2008.....Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI) 63.1-95 (RA 01).....Method of Testing Liquid Line Refrigerant Driers (ANSI) D. American National Standards Institute (ANSI): ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems Z535.1-2006......Safety Color Code E. American Society of Mechanical Engineers (ASME): ANSI/ASME B16.22-2001 (R2005) Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI) ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer Components (ANSI) ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments ANSI/ASME B40.200-2008.. Thermometers, Direct Reading and Remote Reading F. American Society for Testing and Materials (ASTM) B88-03.....Standard Specification for Seamless Copper Water Tube B280-08.....Standard Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field G. American Welding Society, Inc. (AWS): Brazing Handbook A5.8/A5.8M-04.....Standard Specification for Filler Metals for Brazing and Braze Welding H. Federal Specifications (Fed. Spec.) Fed. Spec. GG I. Underwriters Laboratories (U.L.): U.L.207-2009.....Standard for Refrigerant-Containing Components and Accessories, Nonelectrical ## PART 2 - PRODUCTS #### 2.1 PIPING AND FITTINGS A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel. - B. Fittings, Valves and Accessories: - 1. Copper fittings: Wrought copper fittings, ASME B16.22. - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5. - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA). - 2. Refrigeration Valves: - a. Install New Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating. - 3. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size. - 4. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor. ## 2.2 PIPE SUPPORTS A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. ## 2.3 REFRIGERANTS AND OIL A. Provide EPA approved refrigerant and oil for proper system operation. ## 2.4 PIPE INSULATION FOR MORTUARY REFRIGERATORS - A. Flexible elastomeric: Refer to specification Section 23 07 11, HVAC INSULATION. - B. Insulate refrigerant suction piping from unit cooler to condensing unit. Use 20 mm (3/4-inch) thick insulation on piping inside the refrigerator or freezer and 40 mm (1-1/2 inch) thick insulation (double layer required) on piping outside the refrigerated space. ### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5 - 1. Install piping as short as possible, with a minimum number of joints, elbow and fittings. - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation. - 3. Use copper tubing in protective conduit when installed below ground. - 4. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations. #### B. Joint Construction: - 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M. - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing. - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel. - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation. - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture. - C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly. - D. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION. #### 3.2 PIPE AND TUBING INSULATION - A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather. # 3.3 SIGNS AND IDENTIFICATION A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied. ## 3.4 FIELD QUALITY CONTROL Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping. - A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of Resident Engineer. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight. - 1. Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation. - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group Al refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum. - B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components. - C. Refrigerator/Freezer Start-up and Performance Tests: Specification Section 11 78 13, MORTUARY REFRIGERATORS//. # 3.5 SYSTEM TEST AND CHARGING - A. System Test and Charging: As recommended by the equipment manufacturer or as follows: - Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system - for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest. - 2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks. - 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant. - - - E N D - - - # SECTION 23 25 00 HVAC WATER TREATMENT #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following. - 1. Cleaning compounds. - 2. <u>NOTE</u>: Due to the small volume of chilled water contained in the new piping, no new chemical treatment will be required to be added to the existing system. This section is for cleaning compounds only. #### 1.2 RELATED WORK - A. Test requirements and instructions on use of equipment/system: Section 01 00 00, GENERAL
REQUIREMENTS. - B. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - C. Piping and valves: Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING. ## 1.3 QUALITY ASSURANCE A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. SPEC WRITER NOTE: Evaluate the extent of technical services on a case by case basis. - B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing and cleaning of new piping. - C. Field Quality Control and Certified Laboratory Reports: During the one year guarantee period, the water treatment laboratory shall provide not less than 12 reports based on on-site periodic visits, as stated in paragraph 1.3.B, sample taking and testing, and review with VA personnel, of water treatment control for the previous period. In addition to field tests, the water treatment laboratory shall provide certified laboratory test reports. These monitoring reports shall assess chemical treatment accuracy, scale formation, fouling and corrosion control, and shall contain instructions for the correction of any out-of-control condition. - D. Log Forms: Provide one year supply of preprinted water treatment test log forms. - E. Cleaning Compounds: Cleaning Compounds shall be non-toxic approved by local authorities and meeting applicable EPA requirements. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data including: - 1. Cleaning compounds and recommended procedures for their use. - C. Materials Safety Data Sheet for all proposed cleaning compounds, based on U.S. Department of Labor Form No. L5B-005-4. #### PART 2 - PRODUCTS #### 2.1 CLEANING COMPOUNDS - A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects. - B. All chemicals to be acceptable for discharge to sanitary sewer. - C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures. # 2.2 EQUIPMENT AND MATERIALS IDENTIFICATION Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. ## PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Delivery and Storage: Deliver all cleaning compounds in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills. - B. Install equipment necessary to inject cleaning compounds and adequately drain such compounds from the system. Charge systems according to the manufacturer's instructions and as directed by the Technical Representative. - C. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils. - D. Do not valve in or operate system pumps until after system has been cleaned. - E. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers. - F. Perform tests and report results in accordance with Section 01 00 00, $\mbox{GENERAL}$ REQUIREMENTS. - G. After cleaning is complete, and fresh water PH is acceptable to manufacturer of water treatment chemical, Open new piping system valves to allow blending of non and treated water. - - - E N D - - - # SECTION 23 31 00 HVAC DUCTS AND CASINGS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Ductwork and accessories for HVAC including the following: - 1. Supply air, outside air and exhaust. - 2. Exhaust duct with HEPA filters for Autopsy Suite #### B. Definitions: - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible. - 2. Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum. - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible. #### 1.2 RELATED WORK - A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING. - B. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - C. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. - D. Duct Insulation: Section 23 07 11, HVAC INSULATION - E. Supply Air Fans: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS. - F. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS. - G. Air Filters and Filters' Efficiencies: Section 23 40 00, HVAC AIR CLEANING DEVICES. - H. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. - I. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC. ## 1.3 QUALITY ASSURANCE - A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - B. Fire Safety Code: Comply with NFPA 90A. - C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality. - D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings. - E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Rectangular ducts: - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement. - b. Sealants and gaskets. - c. Access doors. - 2. Round and flat oval duct construction details: - a. Manufacturer's details for duct fittings. - b. Duct liner. - c. Sealants and gaskets. - d. Access sections. - e. Installation instructions. - 3. Volume dampers. - 4. Upper hanger attachments. - 5. Fire dampers with installation instructions. - 6. Flexible ducts and clamps, with manufacturer's installation instructions. - 7. Flexible connections. - 8. Instrument test fittings. - 9. Details and design analysis of alternate or optional duct systems. - 10 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. - C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 #### 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures | C. | American Society for Testing and Materials (ASTM): | |------|---| | | A167-99(2009)Standard Specification for Stainless and | | | Heat-Resisting Chromium-Nickel Steel Plate, | | | Sheet, and Strip | | | A653-09Standard Specification for Steel Sheet, | | | Zinc-Coated (Galvanized) or Zinc-Iron Alloy | | | coated (Galvannealed) by the Hot-Dip process | | | A1011-09aStandard Specification for Steel, Sheet and | | | Strip, Hot rolled, Carbon, structural, High- | | | Strength Low-Alloy, High Strength Low-Alloy with | | | Improved Formability, and Ultra-High Strength | | | B209-07Standard Specification for Aluminum and | | | Aluminum-Alloy Sheet and Plate | | | C1071-05elStandard Specification for Fibrous Glass Duct | | | Lining Insulation (Thermal and Sound Absorbing | | | Material) | | | E84-09aStandard Test Method for Surface Burning | | | Characteristics of Building Materials | | D. | National Fire Protection Association (NFPA): | | | 90A-09Standard for the Installation of Air | | | Conditioning and Ventilating Systems | | | 96-08Standard for Ventilation Control and Fire | | | Protection of Commercial Cooking Operations | | Ε. | Sheet Metal and Air Conditioning Contractors National Association | | | (SMACNA): | | | 2nd Edition - 2005HVAC Duct Construction Standards, Metal and | | | Flexible | | | 1st Edition - 1985HVAC Air Duct Leakage Test Manual | | | 6th Edition - 2003Fibrous Glass Duct Construction Standards | | F. | Underwriters Laboratories, Inc. (UL): | | | 181-08Factory-Made Air Ducts and Air Connectors | | | 555-06Standard for Fire Dampers | | | 555S-06Standard for Smoke Dampers | | PT ' | 2 - PRODUCTS | ## PART 2 - PRODUCTS # 2.1 DUCT MATERIALS AND SEALANTS - A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052. - B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts - and Finish No. 2B for concealed duct or ducts located in mechanical rooms. - C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9. - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently
elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond. - 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant. - 3. Gaskets in Flanged Joints: Soft neoprene. - D. Approved factory made joints may be used. #### 2.2 DUCT CONSTRUCTION AND INSTALLATION - A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications: - B. Duct Pressure Classification: - 0 to 50 mm (2 inch) - > 50 mm to 75 mm (2 inch to 3 inch) - > 75 mm to 100 mm (3 inch to 4 inch) Show pressure classifications on the floor plans. - C. Seal Class: All ductwork shall receive Class A Seal - D. Duct for Negative Pressure Up to 750 Pa (3 inch W.G.): Provide for exhaust duct between HEPA filters and exhaust fan inlet including systems for Autopsy Suite exhaust. - 1. Round Duct: Galvanized steel, spiral lock seam construction with standard slip joints. - 2. Rectangular Duct: Galvanized steel, minimum 1.0 mm (20 gage), Pittsburgh lock seam, companion angle joints 32 mm by 3.2 mm (1-1/4 by 1/8 inch) minimum at not more than 2.4 m (8 feet) spacing. Approved pre-manufactured joints are acceptable in lieu of companion angles. - E. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings. - 1. Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound. - 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards. - 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted. - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib. - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams. - 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer. - F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers. - G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct. ## 2.3 DUCT LINER NOT PERMITTED ON THIS PROJECT ## 2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS - A. Provide access doors, sized and located for maintenance work, upstream, in the following locations: - 1. Each fire damper (for link service), smoke damper and automatic control damper. - B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts. - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12). - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11). #### 2.5 FIRE DAMPERS - A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream. - B. Fire dampers in wet air exhaust shall be of stainless steel construction, all others may be galvanized steel. - C. Minimum requirements for fire dampers: - 1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation. - 2. Submit manufacturer's installation instructions conforming to UL rating test. #### 2.6 SMOKE DAMPERS - A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450 m/min (1500 fpm). Maximum static pressure loss: 32 Pa (0.13 inch W.G.). - B. Maximum air leakage, closed damper: 0.32 cubic meters /min/square meter (4.0 CFM per square foot) at 750 Pa (3 inch W.G.) differential pressure. - C. Minimum requirements for dampers: - 1. Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test. - 2. Frame: Galvanized steel channel with side, top and bottom stops or seals. - 3. Blades: Galvanized steel, parallel type preferably, 300 mm (12 inch) maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers. - 4. Shafts: Galvanized steel. - 5. Bearings: Nylon, bronze sleeve or ball type. - 6. Hardware: Zinc plated. - 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation. - D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage. #### 2.7 FLEXIBLE AIR DUCT - A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown. - B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2. - C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm). # D. Application Criteria: - 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal. - 2. Maximum working velocity: 1200 m/min (4000 feet per minute). - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative. - E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation. #### 2.8 FLEXIBLE DUCT CONNECTIONS A. Where duct connections are made to fans and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted. #### 2.9 PREFABRICATED ROOF EOUIPMENT RAILS A. Galvanized steel (18 inches) above finish roof service, continuous welded corner seams, treated wood nailer, built-in cant strips (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Equipment rails shall be constructed for pitched roof or ridge mounting as required to keep top of curb level. Rails are to span a minimum of two (2) roof joists. Equipment is to be centered on the rails. Secure rails to roof and equipment to rails as required by rail manufacturer. #### 2.10 FIRESTOPPING MATERIAL A. Refer to Section 07 84 00, FIRESTOPPING. ## 2.11 DUCT MOUNTEDTEMPERATURE SENSOR (AIR) A. Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. #### 2.12 INSTRUMENT TEST FITTINGS - A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage. - B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving
side of each heating coil, cooling coil, and heat recovery unit. ## PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings. - B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards: - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no - additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties. - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound. - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards. - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal. - C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4. - D. Install fire dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers to the Resident Engineer. - E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A. - F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards. - G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility. ## H. Control Damper Installation: - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size. - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors. - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated. - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation. - I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer. - J. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation. #### 3.2 DUCT LEAKAGE TESTS AND REPAIR - A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor. - B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. //Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the Resident Engineer on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated. // - C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate. - D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas. - E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage. - F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer. - G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork. - H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly. ## 3.3 DUCTWORK EXPOSED TO WIND VELOCITY A. Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of __145__km/h (_90_mph). // # 3.4 TESTING, ADJUSTING AND BALANCING (TAB) A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC. # 3.5 OPERATING AND PERFORMANCE TESTS A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION - - - E N D - - - # SECTION 23 34 00 HVAC FANS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Fans for heating, ventilating and air conditioning. - B. Product Definitions: AMCA Publication 99, Standard 1-66. #### 1.2 RELATED WORK - A. Section 01 00 00, GENERAL REQUIREMENTS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. - E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. - G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. - H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS. - I. Section 23 82 16, AIR COILS. ## 1.3 QUALITY ASSURANCE - A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal. - C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III). - D. Fans and power ventilators shall comply with the following standards: - 1. Testing and Rating: AMCA 210. - 2. Sound Rating: AMCA 300. - E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - F. Performance Criteria: - 1. The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions. - 2. Select the fan operating point as follows: - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency - G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel. - H. Corrosion Protection: - 1. All steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of nonmetallic material. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturers Literature and Data: - 1. Fan sections, motors and drives. - 2. Centrifugal fans, motors, drives, accessories and coatings. - a. Up-blast Autopsy Room exhaust fan. - C. Certified Sound power levels for each fan. - D. Motor ratings types, electrical characteristics and accessories. - E. Belt guards. - F. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. - G. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and
horsepower for design point of operation. # 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - - B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus | D1735-08Sta | ndard Practice for Testing Water Resistance | |-------------|--| | of | Coatings Using Water Fog Apparatus | | D3359-08Sta | ndard Test Methods for Measuring Adhesion by | | Tap | e Test | | G152-06Sta | ndard Practice for Operating Open Flame | | Car | oon Arc Light Apparatus for Exposure of Non- | | Met | allic Materials | | G153-04Sta | ndard Practice for Operating Enclosed Carbon | | Arc | Light Apparatus for Exposure of Non-Metallic | | Mat | erials | D. National Fire Protection Association (NFPA): NFPA 96-08.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations E. National Sanitation Foundation (NSF): 37-07......Air Curtains for Entrance Ways in Food and Food Service Establishments F. Underwriters Laboratories, Inc. (UL): 181-2005......Factory Made Air Ducts and Air Connectors #### 1.6 EXTRA MATERIALS A. Provide one additional set of belts for all belt-driven fans. # PART 2 - PRODUCTS # 2.1 FAN SECTION (CABINET FAN) Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS. ## 2.2 CENTRIFUGAL FANS - A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor. - B. Fan arrangement, unless noted or approved otherwise: - 1. DWDl fans: Arrangement 3. - 2. SWSl fans: Arrangement 1, 3, 9 or 10, // except for fume hood (H7 or H13) exhaust fans Arrangement 3 shall not be acceptable. // - C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards. - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections. - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically. - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class. - 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing. - 5. Belts: Oil resistant, non-sparking and non-static. - 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation. - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions. - 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors. - 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for controller/motor combination requirements. - D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. //Provide factory wired disconnect switch.// - E. Tubular Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C2 thru 2.2.C9 provide; - 1. Housings: Hot rolled steel, one-piece design, incorporating integral guide vanes, motor mounts, bolted access hatch and end flanges. Provide spun inlet bell and screen for unducted inlet and screen for unducted outlet. Provide welded steel, flanged inlet and outlet cones for ducted connection. Provide mounting legs or suspension brackets as required for support. Guide vanes shall straighten the discharge air pattern to provide linear flow. - F. Industrial Fans: Use where scheduled or in lieu of centrifugal fans for low volume high static service. Construction specifications paragraphs A - and C for centrifugal fans shall apply. Provide material handling flat blade type fan wheel. - G. Utility Fans, Vent Sets and Small Capacity Fans: Class 1 design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300 mm (12 inches) and larger. Requirement for AMCA seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron. - H. Spark Resistant/Explosion Proof Fans: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), provide AMCA construction option: A, B or C as indicated. Drive set shall be comprised of non-static belts for use in an explosive atmosphere. Motor shall be explosion proof type if located in air stream. #### 2.3 POWER ROOF VENTILATOR - A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. - B. Type: Centrifugal fan, backward inclined blades. Provide up-blast type as indicated. - C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper. //Provide electric motor operated damper where indicated.// - D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream. - E. Prefabricated Roof Equipment Rails: As specified in Section 23 31 00 HVAC Ducts and Casings. ## PART 3 - EXECUTION # 3.1 INSTALLATION - A. Install fan, motor and drive in accordance with manufacturer's instructions. - B. Align fan and motor sheaves to allow belts to run true and straight. - C. Bolt equipment to curbs with galvanized lag bolts. - D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. # 3.2 PRE-OPERATION MAINTENANCE - A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants. - B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness. - C. Clean fan interiors to remove foreign material and construction dirt and dust. # 3.3 START-UP AND INSTRUCTIONS - A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications. - B. Check vibration and correct as necessary for air balance work. - C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - - - E N D - - - # SECTION 23 37 00 AIR OUTLETS AND INLETS ## PART 1 - GENERAL #### 1.1 DESCRIPTION A. Air Outlets and Inlets: Diffusers, Registers, and Grilles. #### 1.2 RELATED WORK - A. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - C. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. #### 1.3 QUALITY ASSURANCE - A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Fire Safety Code: Comply with NFPA 90A. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Diffusers, registers, grilles and accessories. - C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. # 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air Diffusion Council Test Code: - 1062 GRD-84......Certification, Rating, and Test Manual 4^{th} Edition - C. American Society of Civil Engineers (ASCE): - ASCE7-05......Minimum Design Loads for Buildings and Other Structures - D. American Society for Testing and Materials (ASTM): - A167-99 (2004)......Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip - B209-07......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate - E. National Fire Protection Association (NFPA): - 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems - F. Underwriters Laboratories, Inc. (UL): - 181-08.....UL Standard for Safety Factory-Made Air Ducts and Connectors ## PART 2 - PRODUCTS ## 2.1 AIR OUTLETS AND INLETS ## A. Materials: - 1. Steel or aluminum except that all exhaust air inlets installed in Autopsy Body Cooler shall be stainless steel. Use aluminum air outlets and inlets for facilities located in high-humidity areas. Exhaust air registers located in
combination toilets and shower stalls shall be constructed from aluminum. Provide manufacturer's standard gasket. - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel. - Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations. - B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT for NC criteria. - C. Air Supply Outlets: - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings. - a. Slot diffuser/plenum: - 1) Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Form slots or use adjustable pattern controllers, to provide stable, horizontal air flow pattern over a wide range of operating conditions. - 2) Galvanized steel boot lined with 13 mm (1/2 inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, antimicrobial, and non-friable. - 3) Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet - duct and plenum size shall be as recommended by the manufacturer. - 4) Maximum pressure drop at design flow rate: 37 Pa (0.15 inch W.G.) - D. Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers. - 1. Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish. - 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin. - 3. Perforated Face Type: To match supply units. - 4. Grid Core Type: 13 mm by 13 mm (1/2 inch by 1/2 inch) core with 30 mm (1-1/4 inch) margin. - 5. Linear Type: To match supply units. - 6. Door Grilles: Are furnished with the doors. - 7. Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area. - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish. - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting. - 8. Exhaust inlet grille for Autopsy Body Refrigerator is to be stainless steel constructed. ## PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings. - B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. # 3.2 TESTING, ADJUSTING AND BALANCING (TAB) Refer to Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. # 3.3 OPERATING AND PERFORMANCE TESTS - - - E N D - - - # SECTION 23 40 00 HVAC AIR CLEANING DEVICES ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Air filters for heating, ventilating and air conditioning. - B. Definitions: Refer to ASHRAE Standard 52.1 for definitions of face velocity, net effective filtering area, media velocity, resistance pressure drop), atmospheric dust spot efficiency and dust-holding capacity. ASHRAE Standard 52.1 measures arrestance, dust spot efficiency and dust holding capacity of filters. - C. Refer to ASHRAE Standard 52.2 for definitions of MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency) and particle size ranges for each MERV number. ASHRAE Standard 52.2 measures particle size efficiency (PSE). ## 1.2 RELATED WORK - A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Filter housing and racks: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS. ## 1.3 QUALITY ASSURANCE - A. Air Filter Performance Report for Extended Surface Filters: - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standards 52.1 and 52.2 for type filter under test and acceptable to Resident Engineer, indicating that filters comply with the requirements of this specification. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification. - 2. Government Option: The Government at its option may take one of the filters for each different type submitted and run an independent test to determine if the filter meets the requirements of this specification. When the filter meets the requirements, the Government will pay for the test. When the filter does not meet the specification requirements, the manufacturer will be required to pay for the test and replace the filters with filters that will perform as required by the specifications. - 3. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing. - B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government. - C. Comply with UL Standard 586 for flame test. - D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, UL classification.// ## 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: - 1. Extended surface filters. - 2. Holding frames. Identify locations. - 3. Side access housings. Identify locations, verify insulated doors. - 4. HEPA filters. - 5. Magnehelic gages. - C. Air Filter performance reports. - D. Suppliers warranty. - E. Field test results for HEPA filters as per paragraph 2.3.E.3. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. - B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): - 52.1-92R......Gravimetric and Dust-Spot procedures for Testing Air Cleaning Devices Used in General Ventilation for Removing Particulate Matter 52.2-2007...........Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size C. American Society of Mechanical Engineers (ASME): NQA-1-2008.....Quality Assurance Requirements for Nuclear Facilities Applications D. Underwriters Laboratories, Inc. (UL): 586; Amendment 20 March 2000 High-Efficiency, Particulate, Air Filter Units 900; Revision 15 July 2009 Test Performance of Air Filter Units ## PART 2 - PRODUCTS #### 2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED - A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of spare filters to the Resident Engineer. - B. The Resident Engineer will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements. ## 2.2 EXTENDED SURFACE AIR FILTERS - A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the dust-load limit is reached as indicated by maximum (final) pressure drop. - B. Filter Classification: UL approved Class 1 or Class 2 conforming to UL Standard 900. - C. Filter Grades, Percent, Average ASHRAE Efficiency and Controlled Containment: Table 2.2C | Filter Grades | | | | | |---------------|-------------|-------------|-----------------|----------------| | MERV Value | Application | Dust-Spot | Particle Size | Thickness | | ASHRAE | | Efficiency | | /Type | | 52.2 | | ASHRAE 52.1 | | | | 7 | Pre-Filter | 25 to 30% | 3 to 10 Microns | 50 mm (2-inch) | | | | | | Throwaway | | 8 | Pre-Filter | 30 to 35% | 3 to 10 Microns | 50 mm (2-inch) | | | | | | Throwaway | | 11 | After-Filter | 60 to 65% | 1 to 3 Microns | 150 mm (6-inch) | |----|--------------|-----------|-----------------|------------------| | | | | | Rigid Cartridge | | 13 | After-Filter | 80 to 90% | 0.3 to 1 Micron | 300 mm (12-inch) | | | | | | Rigid Cartridge
| | 14 | After-Filter | 90 to 95% | 0.3 to 1 Micron | 300 mm (12-inch) | | | | | | Rigid Cartridge | | 17 | Final-Filter | 99.97% | 0.3 Microns | HEPA - IEST A | # D. Filter Media: - 1. MERV 11, 13, and 14 Supported (Rigid Pleated) Type: Media shall be composed of high density glass fibers or other suitable fibers. Fastening methods used to maintain pleat shape, (metal backing or aluminum separators) shall be sealed in a proper enclosing frame to insure no air leakage for life of filter. Staples and stays are prohibited. - 2. MERV 7 and 8 (Pleated) Type: Media shall be composed of synthetic/natural fibers. Media shall maintain uniform pleat shape and stability for proper air flow and maximum dust loading. The media frame shall be constructed of aluminized steel. Bond the pleated media pack on all four edges to insure no air leakage for the life of the filter. Staples and stays are prohibited. - E. Filter Efficiency and Arrestance: Efficiency and arrestance of filters shall be determined in accordance with ASHRAE Standard 52.1, and MERV value in accordance with ASHRAE Standard 52.2. - F. Maximum initial resistance, recommended change over pressure drop, and maximum recommended final resistance, PA (inches of water), for each filter cartridge when operated at 150 m/min (500 feet per minute) face velocity shall be as specified in Table 2.2.F: Table 2.2.F | Filter Initial and Final Resistance | | | | |-------------------------------------|-----------------------|---|-----------------------------| | | Initial
Resistance | Maximum Recommended
Change Over
Pressure Drop | Maximum Final
Resistance | | MERV 7 (2-inch deep) | 78 (0.31) | 156 (0.62) | 250 (1.00) | | MERV 8 (2-inch deep) | 95 (0.38) | 190 (0.76) | 250 (1.00) | | MERV 11 (12-inch deep) | 60 (0.24) | 120 (0.48) | 375 (1.50) | | MERV 13 (12-inch deep) | 125 (0.50) | 250 (1.00) | 375 (1.50) | | MERV 14 (12-inch deep) | 170 (0.68) | 340 (1.36) | 375 (1.50) | # G. Side Servicing Housings: - 1. Minimum 1.6 mm (16 Gauge) galvanized steel, or aluminum, completely factory assembled with upstream and downstream flanges for connection into the duct system. Furnish housing length sufficient to provide for fully extended operating filter elements. - 2. Access doors: Double wall insulated, located on one side of the housing; with continuous gasketing on the perimeter and positive locking devices. //Provide access doors on both sides only when required as shown on drawings.// Design doors to withstand a minimum positive/negative 1.0 kPa (4 inch WG) static pressure. Furnish access doors that are the full size of the housing. - 3. Filter slide channels: Channels shall incorporate a positive-sealing gasket material to seal the top and bottom of the filter cartridge frames to prevent bypass. Provide factory installed gasketing to prevent leakage between cartridges, and between cartridges and doors. - H. Equipment Identification: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. # 2.3 HEPA FILTERS (MERV 17) - A. High Efficiency Particulate Air (HEPA) filters shall be individually tested and certified to be 99.97 percent minimum efficient meeting minimum MERV value of 17 when handling 0.3 micron or smaller particles in accordance with DOP test method. Filters shall be factory scanned. The DOP efficiency along with filter serial number and name of manufacturer shall be marked on the filter. HEPA filter shall have a maximum initial filter resistance of 250 Pa (1 inch W.G.) and a maximum recommended final resistance of 500 Pa (2 inch WG) with operate when operating at 125 m/s (250 ft/min) face velocity. The Maximum recommended change over pressure drop shall be no greater than twice the actual initial pressure drop. - B. Filter media: Factory constructed by pleating a continuous sheet of media into closely spaced pleats with kraft or aluminum separators. Sealer shall be self-extinguishing. - C. Enclosing frame shall be 16 gauge galvanized steel. Provide pre-filters in the same housing with a separate removal assembly that operates independently from the HEPA filters. - D. Pre-filter: MERV 7 and 8, 2 inches deep. See Paragraph 2.2. ## 2.4 INSTRUMENTATION A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, //except for MERV 17 HEPA Final Filters, where the range shall be zero to 750 Pa (zero to three inch water gage)// Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment. - B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC - C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor. - D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement. ## 2.5 HVAC EQUIPMENT FACTORY FILTERS - A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to filter requirements shown on the unit schedule. - B. Cleanable filters are not permitted. - C. Automatic Roll Type filters are not permitted. #### PART 3 - EXECUTION #### 3.1 INSTALLATION - A. Install supports, filters and gages in accordance with manufacturer's instructions. - B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing. ## 3.2 START-UP AND TEMPORARY USE - A. Clean and vacuum air handling units and plenums prior to starting air handling systems. - B. Install or deliver replacement filter units as directed by the Resident Engineer. - - E N D - - - # SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Air handling units including integral components specified herein. - B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings. #### 1.2 RELATED WORK - A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Sound and vibration requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - C. Piping and duct insulation: Section 23 07 11, HVAC INSULATION. - D. Piping and valves: Section 23 21 13 / 23 22 13, HYDRONIC PIPING / STEAM AND CONDENSATE HEATING PIPING. - E. Heating and cooling coils and pressure requirements: Section 23 82 16, AIR COILS. - F. Requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining, and air leakage: Section 23 31 00, HVAC DUCTS and CASINGS. - G. Air filters and filters' efficiency: Section 23 40 00, HVAC AIR CLEANING DEVICES. - H. HVAC controls: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. - Testing, adjusting and balancing of air and water flows: Section 23 05 TESTING, ADJUSTING, AND BALANCING FOR HVAC. - J. Types of motors: Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. - K. Types of motor starters: Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS. # 1.3 QUALITY ASSURANCE - A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Air Handling Units Certification: Certify air-handling units in accordance with ARI 430. - C. Heating, Cooling, and Air Handling Capacity and Performance Standards: ARI 430, ARI 410, ASHRAE 51, and AMCA 210. - D. Performance Criteria: - 1. The fan schedule indicates design CFM Design Cubic Feet per Minute followed by L/s Liters per Second in brackets. The Fan motor BHP (KW) at the operating point on the fan curves shall be increased by 10% (safety factor) to cover the drive losses and field conditions. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor. - 2. Select the fan operating point as follows: - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point. - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency. - 3. Operating Limits: AMCA 99. - E. Units shall be constructed by a manufacturer who has been manufacturing air handling units for at least five (5) years. #### 1.4. SUBMITTALS: - A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews. - B. Manufacturer's Literature and Data: - 1. Submittals for AHUs shall include fans, drives, motors, coils, humidifiers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc). - 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to
be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version - compatible to AutoCAD version used by the VA at the time of submission. - 3. Submit sound power levels in each octave band for fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute). - 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings. - C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams. - D. Submit written test procedures two weeks prior to factory testing. Submit written results of factory tests for approval prior to shipping. - E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below. - 1. Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt. - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections. - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4). - 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. # 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-01......Standard for Forced-Circulation Air-Heating and Air-Cooling Coils - 430-09.....Central Station Air Handling Units - C. Air Movement and Control Association International, Inc. (AMCA): 210-07.....Laboratory Methods of Testing Fans for Rating - D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): - 170-2008......Ventilation of Health Care Facilities - E. American Society for Testing and Materials (ASTM): - ASTM B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus - ASTM D1654-08......Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments - ASTM D1735-08......Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus - ASTM D3359-08.....Standard Test Methods for Measuring Adhesion by Tape Test - F. Military Specifications (Mil. Spec.): - MIL-P-21035B-2003......Paint, High Zinc Dust Content, Galvanizing Repair (Metric) - G. National Fire Protection Association (NFPA): - NFPA 90A.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009 - H. Energy Policy Act of 2005 (P.L.109-58) # PART 2 - PRODUCTS # 2.1 AIR HANDLING UNITS - A. General: - 1. AHUS shall be entirely of double wall galvanized steel construction without any perforations except as specified in section 2.1.C.2. Casing is specified in paragraph 2.1.C. Foil face lining is not an acceptable substitute for double wall construction. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of - 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified. - 2. The contractor and the AHU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government. - 3. AHUS shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit. - 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative. - 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled. - 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher. ## B. Base: - 1. Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and // steam coil condensate return trap // as shown on drawings. - 2. AHUs shall be completely self supporting for suspension as shown on drawings. - 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel. - C. Casing (including wall, floor and roof): - 1. General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces. - 2. Casing Construction: Table 2.1.C.2 | Outer Panel | 0.8 mm (22 Gage) Minimum | | |---------------|---|--| | Inner Panel | 0.8 mm (22 Gage) Minimum | | | Insulation | Foam | | | Thickness | 50 mm (2 inch) Minimum | | | Density | $48 \text{ kg/m}^3 (3.0 \text{ lb/ft}^3) \text{ Minimum}$ | | | Total R Value | 2.3 m ² .K/W (13.0 ft ² . F.hr/Btu) | | | | Minimum | | 3. Casing Construction (Contractor's Option): Table 2.1.C.3 | Outer Panel | 1.3 mm (18 Gage) Minimum | | | |-------------|--------------------------|--|--| | Inner Panel | 1.0 mm (20 Gage) Minimum | | | | Insulation | Fiberglass | | | | Thickness | 50 mm (2 inch) Minimum | | | | Density | 24 kg/m³ (1.5 lb/ft³) Minimum | | |---------------|--|--| | Total R Value | 1.4 m ² .K/W (8.0 ft ² . F.hr/Btu) | | | | Minimum | | - 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters. - 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable. - 6. Access Doors: Provide in each access section and where shown on drawings. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to
provide an airtight seal. The access doors for fan section, mixing box, // humidifier // coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame. - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door. - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG). - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose. - 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight. #### D. Floor: - 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan. - E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line. - 1. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable. - 2. Installation, including frame, shall be designed and sealed to prevent blow-by. # F. Fans Sections: 1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, forward curved type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B (10) life of not less than 50,000 hours and an L (50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow. - 2. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. - G. Fan Motor, Drive and Mounting Assembly: - 1. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements. - 2. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS. - 3. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow. - H. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements. - 1. Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing. - 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES. - I. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. For air handling units serving surgical suites, provide copper fins for all coils. For all air handling units in high humidity areas, provide factory-coated coils for protection from corrosion by using multiple stage electro-deposition coating process. Refer to Drawings and Section 23 82 16, AIR COILS for additional coil requirements. - 1. Water Coils - 2. Integral Face and Bypass Steam Coils: Provide integral vertical face and bypass dampers. Electric damper operators shall be furnished and mounted by the AHU manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. - J. Humidifier: When included in design, coordinate the humidification requirements with section 23 22 13 Steam and Condensate Heating Piping. Provide humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware. - K. Electrical: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL. - 1. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL. ## PART 3 - EXECUTION # 3.1 INSTALLATION - A. Install air handling unit in conformance with ARI 435. - B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair - painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation. - C. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements. - D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT. - E. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass. ## 3.2 STARTUP SERVICES - A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation. - B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel. - C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing,
verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc. - - - E N D - - - SECTION 23 82 16 ## PART 1 - GENERAL ## 1.1 DESCRIPTION Heating and cooling coils for air handling unit and duct applications. ## 1.2 RELATED WORK - A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS. - C. Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS ## 1.3 QUALITY ASSURANCE - A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. - B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with ARI Standard 410 and shall bear the ARI certification label. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves. - C. Provide installation, operating and maintenance instructions. - D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products. - E. Coils may be submitted with Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS or Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air Conditioning and Refrigeration Institute (ARI): Directory of Certified Applied Air Conditioning Products ARI 410-02......Forced-Circulation Air-Cooling Air-Heating - C. American Society for Testing and Materials (ASTM): B75/75M-02.....Seamless Copper Tube (Metric) - D. National Fire Protection Association (NFPA): 70-05......National Electric Code - E. National Electric Manufacturers Association (NEMA): 250-03..... Enclosures for Electrical Equipment (1,000 Volts Maximum) F. Underwriters Laboratories, Inc. (UL): 1996-01............Electric Duct Heaters ## PART 2 - PRODUCTS ## 2.1 HEATING AND COOLING COILS - A. Conform to ASTM B75 and ARI 410. - B. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing. - C. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing. Provide copper fins for sprayed coil applications and reheat coils for Operating Rooms. - D. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils. - E. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends. - F. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges. - G. Pressures kPa (PSIG): | Pressure | Water Coil | Steam Coil | Refrigerant Coil | |----------|------------|------------|------------------| | Test | 2070 (300) | 1725 (250) | 2070 (300) | | Working | 1380 (200) | 520 (75) | 1725 (250) | - H. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities. - I. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing. - J. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS or Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS. ## 2.2 INTEGRAL FACE AND BYPASS TYPE STEAM COIL - A. Exempt from ARI Test and Certification. - B. Conform to ASTM B75 and ARI 410. - C. Minimum 16 mm (5/8-inch) steam tube installed in concentrically 25 mm (one-inch) OD diameter tube. - D. Casing: 1.9 mm (14 gage) galvanized steel with corrosion resistant paint. - E. Tubes and Bypasses: Vertical or horizontal. - F. Dampers: Interlocking opposed blades to completely isolate coil from air flow when unit is in bypass position; 1.6 mm (16 gage) steel, coated with factory applied corrosion resistant baked enamel finish. Provide damper linkage and pneumatic operator(s) electric operators as required by control system. # 2.3 WATER COILS, INCLUDING GLYCOL-WATER A. Drainable Type (Self-Draining, Self-Venting); manufacturer standard: 1. Cooling, all types. # 2.4 ELECTRIC HEATING COILS ## PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections. - B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections. - - - E N D - - - # SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section applies to all sections of Division 26. - B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, cable, panelboards, and other items and arrangements for the specified items are shown on drawings. - C. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited. # 1.2 MINIMUM REQUIREMENTS - A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards. - B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards. ## 1.3 TEST STANDARDS A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as NEMA, or ANSI. Evidence of compliance shall include certified test reports and definitive shop drawings. # B. Definitions: 1. Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed equipment or materials or periodic evaluation of services, and whose - listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose. - 2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner. - 3. Certified; equipment or product which: - a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner. - b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory. - c. Bears a label, tag, or other record of certification. - 4. Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor. ## 1.4 QUALIFICATIONS (PRODUCTS AND SERVICES) - A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years. - B. Product Oualification: - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years. - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval. - C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations. ## 1.5 APPLICABLE PUBLICATIONS Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted. ## 1.6 MANUFACTURED PRODUCTS - A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available. - B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer. - C. Equipment Assemblies and Components: - 1. Components of an assembled unit need not be products of the same manufacturer. - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit. - 3. Components shall be compatible with each other and
with the total assembly for the intended service. - 4. Constituent parts which are similar shall be the product of a single manufacturer. - D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams. - E. When Factory Testing Is Specified: - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests. - 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests. - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government. # 1.7 EQUIPMENT REQUIREMENTS Where variations from the contract requirements are requested in accordance with Section 00 72 00, GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods. # 1.8 EQUIPMENT PROTECTION A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain. - 1. Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to switchgear, switchboards, panelboards, transformers, motor control centers, motor controllers, uninterruptible power systems, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories. - 2. During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment. - 3. Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement. - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal. - 5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious. ## 1.9 WORK PERFORMANCE - A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart K in addition to other references required by contract. - B. Job site safety and worker safety is the responsibility of the contractor. - C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory: - 1. Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E. - 2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E. - 3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live - electrical equipment, barriers to be installed, safety equipment to be used and exit pathways. - 4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer. - D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS. - E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS. - F. Coordinate location of equipment and conduit with other trades to minimize interferences. # 1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS - A. Equipment location shall be as close as practical to locations shown on the drawings. - B. Working spaces shall not be less than specified in the NEC for all voltages specified. - C. Inaccessible Equipment: - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government. - 2. "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways. # 1.11 EQUIPMENT IDENTIFICATION - A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers (starters), fused and unfused safety switches, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment. - B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 1/2 inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws. C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall indicate the arc hazard boundary (inches), working distance (inches), arc flash incident energy at the working distance (calories/cm²), required PPE category and description including the glove rating, voltage rating of the equipment, limited approach distance (inches), restricted approach distance (inches), prohibited approach distance (inches), equipment/bus name, date prepared, and manufacturer name and address. ## 1.12 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site. - C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. - D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval. - 1. Mark the submittals, "SUBMITTED UNDER SECTION" - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers. - 3. Submit each section separately. - E. The submittals shall include the following: - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required. - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams. - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer. - F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS. - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion. - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment. - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in. - 4. The manuals shall include: - a. Internal and interconnecting wiring and control diagrams with data to explain detailed
operation and control of the equipment. - b. A control sequence describing start-up, operation, and shutdown. - c. Description of the function of each principal item of equipment. - d. Installation instructions. - e. Safety precautions for operation and maintenance. - f. Diagrams and illustrations. - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers and replacement frequencies. - h. Performance data. - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization. - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications. - G. Approvals will be based on complete submission of manuals together with shop drawings. - H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following: - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken. - 2. Each type of conduit coupling, bushing and termination fitting. - 3. Conduit hangers, clamps and supports. - 4. Duct sealing compound. - 5. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker. # 1.13 SINGULAR NUMBER Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings. #### 1.14 ACCEPTANCE CHECKS AND TESTS The contractor shall furnish the instruments, materials and labor for field tests. ## 1.15 TRAINING - A. Training shall be provided in accordance with Article 1.25, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS. - B. Training shall be provided for the particular equipment or system as required in each associated specification. - C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training. - - - E N D - - ## SECTION 26 05 21 ## LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW) #### PART 1 - GENERAL #### 1.1 DESCRIPTION This section specifies the furnishing, installation, and connection of the low voltage power and lighting wiring. #### 1.2 RELATED WORK - A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-rated construction. - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring. # 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 FACTORY TESTS Low voltage cables shall be thoroughly tested at the factory per NEMA WC-70 to ensure that there are no electrical defects. Factory tests shall be certified. # 1.5 SUBMITTALS In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following: - 1. Manufacturer's Literature and Data: Showing each cable type and rating. - 2. Certifications: Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer: - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications. - b. Certification by the contractor that the materials have been properly installed, connected, and tested. # 1.6 APPLICABLE PUBLICATIONS A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only. | В. | American Society of Testing Material (ASTM): | |----|---| | | D2301-04Standard Specification for Vinyl Chloride | | | Plastic Pressure-Sensitive Electrical Insulating | | | Tape | | C. | National Fire Protection Association (NFPA): | | | 70-08National Electrical Code (NEC) | | D. | National Electrical Manufacturers Association (NEMA): | | | WC 70-09Power Cables Rated 2000 Volts or Less for the | | | Distribution of Electrical Energy | | Ε. | Underwriters Laboratories, Inc. (UL): | | | 44-05Thermoset-Insulated Wires and Cables | | | 83-08Thermoplastic-Insulated Wires and Cables | | | 467-071 Electrical Grounding and Bonding Equipment | | | 486A-486B-03Wire Connectors | | | 486C-04Splicing Wire Connectors | | | 486D-05Sealed Wire Connector Systems | | | 486E-94Equipment Wiring Terminals for Use with Aluminum | | | and/or Copper Conductors | | | 493-07Thermoplastic-Insulated Underground Feeder and | | | Branch Circuit Cable | | | 514B-04Conduit, Tubing, and Cable Fittings | | | 1479-03Fire Tests of Through-Penetration Fire Stops | # PART 2 - PRODUCTS # 2.1 CONDUCTORS AND CABLES - A. Conductors and cables shall be in accordance with NEMA WC-70 and as specified herein. - B. Single Conductor: - 1. Shall be annealed copper. - 2. Shall be stranded for sizes No. 8 AWG and larger, solid for sizes No. 10 AWG and smaller. - 3. Shall be minimum size No. 12 AWG, except where smaller sizes are allowed herein. - C. Insulation: - 1. XHHW-2 or THHN-THWN shall be in accordance with NEMA WC-70, UL 44, and UL 83. - D. Color Code: - 1. Secondary service feeder and branch circuit conductors shall be color-coded as follows: | 208/120 volt | Phase | 480/277 volt | | | |--|---------|--------------|--|--| | Black | A | Brown | | | | Red | В | Orange | | | | Blue | С | Yellow | | | | White | Neutral | Gray * | | | | * or white with colored (other than green) tracer. | | | | | - a. Lighting circuit "switch legs" and 3-way switch "traveling wires" shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the //Resident Engineer// //COTR///. - 2. Use solid color insulation or solid color coating for No. 12 AWG and No. 10 AWG branch circuit phase, neutral, and ground conductors. - 3. Conductors No. 8 AWG and larger shall be color-coded using one of the following methods: - a. Solid color insulation or solid color coating. - b. Stripes, bands, or hash marks of color specified above. - c. Color as specified using 0.75 in [19 mm] wide tape. Apply tape in half-overlapping turns for a minimum of 3 in [75 mm] for terminal points, and in junction boxes, pull-boxes, troughs, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type. - 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system. # 2.2 SPLICES AND JOINTS - A. In accordance with UL 486A, C, D, E, and NEC. - B. Aboveground Circuits (No. 10 AWG and smaller): - 1. Connectors: Solderless, screw-on, reusable pressure cable type, rated 600 V, 220° F [105° C], with integral insulation, approved for copper and aluminum conductors. - 2. The integral insulator shall have a skirt to completely cover the stripped wires. - 3. The number, size, and combination of conductors, as listed on the manufacturer's packaging, shall be strictly followed. - C. Aboveground Circuits (No. 8 AWG and larger): - Connectors shall be indent, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors. - 2. Field-installed compression connectors for cable sizes 250 kcmil and larger shall have not fewer than two clamping elements or compression indents per wire. - 3. Insulate splices and joints with materials approved for the particular use, location, voltage, and temperature. Splice and joint insulation level shall be not less than the insulation level of the conductors being joined. - 4. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant. # 2.3 CONTROL WIRING - A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified for power and lighting wiring, except that the minimum size shall be not less than No. 14 AWG. - B. Control wiring shall be large enough such that the voltage drop under in-rush conditions does not adversely affect operation of the controls. ## 2.4 WIRE LUBRICATING COMPOUND A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive. # PART 3 - EXECUTION ## 3.1 GENERAL - A. Install in accordance with the NEC, and as specified. - B. Install all wiring in raceway systems. - C. Splice cables and wires only in outlet boxes, junction boxes, pull-boxes, manholes, or handholes. - D. Wires of different systems (e.g., 120 V, 277 V) shall not be installed in the same conduit or junction box system. - E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight. - F. For panel boards, cabinets, wireways, switches, and equipment assemblies, neatly form, train, and tie the cables in individual circuits. - G. Seal cable
and wire entering a building from underground between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound. - H. Wire Pulling: - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables. Use lubricants approved for the cable. - 2. Use nonmetallic ropes for pulling feeders. - 3. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the //Resident Engineer// //COTR//. - 4. All cables in a single conduit shall be pulled simultaneously. - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. - I. No more than three single-phase branch circuits shall be installed in any one conduit. ## 3.2 SPLICE INSTALLATION - A. Splices and terminations shall be mechanically and electrically secure. - B. Tighten electrical connectors and terminals according to manufacturer's published torque values. - C. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government. ## 3.3 FEEDER IDENTIFICATION - A. In each interior pull-box and junction box, install metal tags on all circuit cables and wires to clearly designate their circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties. - B. In each manhole and handhole, provide tags of the embossed brass type, showing the circuit identification and voltage. The tags shall be the embossed brass type, 1.5 in [40 mm] in diameter and 40 mils thick. Attach tags with plastic ties. #### 3.4 EXISTING WIRING Unless specifically indicated on the plans, existing wiring shall not be reused for a new installation. ## 3.5 CONTROL AND SIGNAL WIRING INSTALLATION - A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified. - B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems. C. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation. ## 3.6 CONTROL AND SIGNAL SYSTEM WIRING IDENTIFICATION - A. Install a permanent wire marker on each wire at each termination. - B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems. - C. Wire markers shall retain their markings after cleaning. #### 3.7 ACCEPTANCE CHECKS AND TESTS - A. Feeders and branch circuits shall have their insulation tested after installation and before connection to utilization devices, such as fixtures, motors, or appliances. Test each conductor with respect to adjacent conductors and to ground. Existing conductors to be reused shall also be tested. - B. Applied voltage shall be 500VDC for 300-volt rated cable, and 1000VDC for 600-volt rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300-volt rated cable and 100 megohms for 600-volt rated cable. - C. Perform phase rotation test on all three-phase circuits. - D. The contractor shall furnish the instruments, materials, and labor for all tests. - - - E N D - - - # SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the general grounding and bonding requirements for electrical equipment and operations to provide a low impedance path for possible ground fault currents. - B. "Grounding electrode system" refers to all electrodes required by NEC, as well as made, supplementary, and lightning protection system grounding electrodes. - C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning. #### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26. - B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low Voltage power and lighting wiring. - C. Section 26 24 16, PANELBOARDS: Low voltage panelboards. # 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 SUBMITTALS - A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - B. Shop Drawings: - 1. Clearly present enough information to determine compliance with drawings and specifications. - 2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors. - C. Test Reports: Provide certified test reports of ground resistance. - D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer: - 1. Certification that the materials and installation are in accordance with the drawings and specifications. - 2. Certification by the contractor that the complete installation has been properly installed and tested. ## 1.5 APPLICABLE PUBLICATIONS Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - A. American Society for Testing and Materials (ASTM): - B1-07......Standard Specification for Hard-Drawn Copper Wire - B3-07.....Standard Specification for Soft or Annealed Copper Wire - B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft - B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983......IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System - C2-07......National Electrical Safety Code - C. National Fire Protection Association (NFPA): - 70-08......National Electrical Code (NEC) - 99-2005......Health Care Facilities - D. Underwriters Laboratories, Inc. (UL): - 486A-486B-03Wire Connectors # PART 2 - PRODUCTS ## 2.1 GROUNDING AND BONDING CONDUCTORS - A. Equipment grounding conductors shall be UL 44 or UL 83 insulated stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG [25 mm²] and larger shall be identified per NEC. - B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes No. 10 AWG [6 mm²] and smaller shall be ASTM B1 solid bare copper wire. - C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater. ## 2.2 GROUND CONNECTIONS - A. Below Grade: Exothermic-welded type connectors. - B. Above Grade: - 1. Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers. - 2. Connection to Building Steel: Exothermic-welded type connectors. - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts. - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners. # PART 3 - EXECUTION ## 3.1 GENERAL - A. Ground in accordance with the NEC, as shown on drawings, and as specified herein. - B. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded. #### 3.2 INACCESSIBLE GROUNDING CONNECTIONS Make grounding connections, which are normally buried or otherwise inaccessible (except connections for which access for periodic testing is required), by exothermic weld. ## 3.3 RACEWAY - A. Conduit Systems: - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor. - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor. - 3. Conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit. - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a bare grounding conductor to the equipment ground bus. - B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits. - C. Boxes, Cabinets, Enclosures, and Panelboards: - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown). - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination. # D. Wireway Systems: - 1. Bond the metallic structures of wireway to provide 100% electrical continuity throughout the wireway system, by connecting a No. 6 AWG [16 mm²] bonding jumper at all intermediate metallic enclosures and across all section junctions. - 2. Install insulated No. 6 AWG [16 mm²] bonding jumpers between the wireway system, bonded as
required above, and the closest building ground at each end and approximately every 50 ft [16 M]. - 3. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions. - 4. Use insulated No. 6 AWG [16 mm²] bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 49 ft [15 M]. - E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor. - F. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box. - G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor. - H. Raised Floors: Provide bonding of all raised floor components. //See details on the drawings. // - I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG [16 mm²]. These conductors shall be installed in rigid metal conduit. # 3.4 CORROSION INHIBITORS When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used. # 3.5 CONDUCTIVE PIPING - A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus. - B. In operating rooms and at intensive care and coronary care type beds, bond the gases and suction piping at the outlets directly to the room or patient ground bus. - - - E N D - - - # SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise. - B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified. ## 1.2 RELATED WORK - A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets. - B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations. - C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction. - D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building. - E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices. - F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26. - G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - H. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits. ## 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. #### 1.4 SUBMITTALS In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following: - A. Manufacturer's Literature and Data: Showing each cable type and rating. The specific item proposed and its area of application shall be identified on the catalog cuts. - B. Shop Drawings: Boxes and - 1. Layout of required conduit penetrations through structural elements. - C. Certifications: - 1. Two weeks prior to the final inspection, submit four copies of the following certifications to the Resident Engineer: - a. Certification by the manufacturer that the material conforms to the requirements of the drawings and specifications. - b. Certification by the contractor that the material has been properly installed. #### 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. American National Standards Institute (ANSI): | C80.1-05 | .Electrical | Rigid | Steel | Conduit | 5 | |----------|-------------|--------|---------|---------|---------| | C80.3-05 | .Steel Elec | trical | Metal | Tubing | | | C80.6-05 | .Electrical | Inter | mediate | e Metal | Conduit | - C. National Fire Protection Association (NFPA): - 70-08......National Electrical Code (NEC) - D. Underwriters Laboratories, Inc. (UL): | 1-05Flexible Metal Conduit | |---| | 5-04Surface Metal Raceway and Fittings | | 6-07Electrical Rigid Metal Conduit - Steel | | 50-95Enclosures for Electrical Equipment | | 360-093Liquid-Tight Flexible Steel Conduit | | 467-07Grounding and Bonding Equipment | | 514A-04Metallic Outlet Boxes | | 514B-04Conduit, Tubing, and Cable Fittings | | 514C-96Nonmetallic Outlet Boxes, Flush-Device | | | 651-05......Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-00......Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06.....Electrical Intermediate Metal Conduit - Steel E. National Electrical Manufacturers Association (NEMA): Covers TC-2-03..... Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable ## PART 2 - PRODUCTS ## 2.1 MATERIAL A. Conduit Size: In accordance with the NEC, but not less than 0.5 in [13 mm] unless otherwise shown. Where permitted by the NEC, 0.5 in [13 mm] flexible conduit may be used for tap connections to recessed lighting fixtures. # B. Conduit: - 1. Rigid steel: Shall conform to UL 6 and ANSI C80.1. - 2. Rigid intermediate steel conduit (IMC): Shall conform to UL 1242 and ANSI C80.6. - 3. Electrical metallic tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 4 in [105 mm] and shall be permitted only with cable rated 600 V or less. - 4. Flexible galvanized steel conduit: Shall conform to UL 1. - 5. Liquid-tight flexible metal conduit: Shall conform to UL 360. #### C. Conduit Fittings: - 1. Rigid steel and IMC conduit fittings: - a. Fittings shall meet the requirements of UL 514B and NEMA FB1. - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable. - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure. - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted. - e. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited. - f. Sealing fittings: Threaded cast iron type. Use continuous draintype sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room. - 2. Electrical metallic tubing fittings: - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1. - b. Only steel or malleable iron materials are acceptable. - c. Compression couplings and connectors: Concrete-tight and raintight, with connectors having insulated throats. - d. Indent-type connectors or couplings are prohibited. - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited. - 3. Flexible steel conduit fittings: - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable. - b. Clamp-type, with insulated throat. - 4. Liquid-tight flexible metal conduit fittings: - a. Fittings shall meet the requirements of UL 514B and NEMA FB1. - b. Only steel or malleable iron materials are acceptable. - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats. - 5. Surface metal raceway fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system. - 6. Expansion and deflection couplings: - a. Conform to UL 467 and UL 514B. - b. Accommodate a 0.75 in [19 mm] deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections. - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors. - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber
material with stainless steel jacket clamps. ## D. Conduit Supports: 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection. - 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod. - 3. Multiple conduit (trapeze) hangers: Not less than 1.5×1.5 in [38 mm \times 38 mm], 12-gauge steel, cold-formed, lipped channels; with not less than 0.375 in [9 mm] diameter steel hanger rods. - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion. - E. Outlet, Junction, and Pull Boxes: - 1. UL-50 and UL-514A. - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes. - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown. - 4. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers. - F. Wireways: Equip with hinged covers, except where removable covers are shown. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system. # PART 3 - EXECUTION ## 3.1 PENETRATIONS - A. Cutting or Holes: - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural elements. - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except where permitted by the //Resident Engineer// //COTR// as required by limited working space. - B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. - C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight, as specified in Section 07 92 00, JOINT SEALANTS. # 3.2 INSTALLATION, GENERAL - A. In accordance with UL, NEC, as shown, and as specified herein. - B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where shown on drawings. - C. Install conduit as follows: - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires. - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings. - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material. - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways. - 5. Cut square, ream, remove burrs, and draw up tight. - 6. Independently support conduit at 8 ft [2.4 M] on centers. Do not use other supports, i.e., suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts. - 7. Support within 12 in [300 mm] of changes of direction, and within 12 in [300 mm] of each enclosure to which connected. - 8. Close ends of empty conduit with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris. - 9. Conduit installations under fume and vent hoods are prohibited. - 10. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers. - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL. - 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices. ## D. Conduit Bends: - 1. Make bends with standard conduit bending machines. - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits. - 3. Bending of conduits with a pipe tee or vise is prohibited. - E. Layout and Homeruns: - 1. Install conduit with wiring, including homeruns, as shown on drawings. - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer. ## 3.3 CONCEALED WORK INSTALLATION #### A. In Concrete: - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers. - 2. Align and run conduit in direct lines. - 3. Install conduit through concrete beams only: - a. Where shown on the structural drawings. - b. As approved by the Resident Engineer prior to construction, and after submittal of drawing showing location, size, and position of each penetration. - 4. Installation of conduit in concrete that is less than 3 in [75 mm] thick is prohibited. - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited. - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings. - c. Install conduits approximately in the center of the slab so that there will be a minimum of 0.75 in [19 mm] of concrete around the conduits. - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited. - B. Above Furred or Suspended Ceilings and in Walls: - 1. Conduit for conductors 600 V and below: EMT. Mixing different types of conduits indiscriminately in the same system is prohibited. - 2. Align and run conduit parallel or perpendicular to the building lines. - 3. Connect recessed lighting fixtures to conduit runs with maximum 6 ft [1.8 M] of flexible metal conduit extending from a junction box to the fixture. - 4. Tightening setscrews with pliers is prohibited. ## 3.4 EXPOSED WORK INSTALLATION A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms. - B. Conduit for Conductors 600 V and Below: EMT. Mixing different types of conduits indiscriminately in the system is prohibited. - C. Align and run conduit parallel or perpendicular to the building lines. - D. Install horizontal runs close to the ceiling or beams and secure with conduit straps. - E. Support horizontal or vertical runs at not over 8 ft [2.4 M] intervals. - F. Surface metal raceways: Use only where shown. - G. Painting: - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING. - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 2 in [50 mm] high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 20 ft [6 M] intervals in between. ## 3.5 MOTORS AND VIBRATING EQUIPMENT - A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission. - B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. Provide a green equipment grounding conductor with flexible metal conduit. # 3.6 EXPANSION JOINTS - A. Conduits 3 in [75 mm] and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations. - B. Provide conduits smaller than 3 in [75 mm] with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 5 in [125 mm] vertical drop midway between the ends. Flexible conduit shall have a bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for conduits 15 in [375 mm] and larger are acceptable. - C. Install expansion and deflection couplings where shown. # 3.7 CONDUIT SUPPORTS, INSTALLATION - A. Safe working load shall not exceed one-quarter of proof test load of fastening devices. - B. Use pipe straps or individual conduit hangers for supporting individual conduits - C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 200 lbs [90 kg]. Attach each conduit with U-bolts or other approved fasteners. - D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items. - E. Fasteners and Supports in Solid Masonry and Concrete: - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete. - 2. Existing Construction: - a. Steel expansion anchors not less than 0.25 in [6 mm] bolt size and not less than 1.125 in [28 mm] embedment. - b. Power set fasteners not less than 0.25 in [6 mm] diameter with depth of penetration not less than 3 in [75 mm]. - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings. - E. Hollow Masonry: Toggle bolts. - F. Bolts supported only by plaster or
gypsum wallboard are not acceptable. - G. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application. - H. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited. - I. Chain, wire, or perforated strap shall not be used to support or fasten conduit. - J. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls. - K. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars. ## 3.8 BOX INSTALLATION - A. Boxes for Concealed Conduits: - 1. Flush-mounted. - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish. - B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations. - C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes. - D. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 24 in [600 mm] center-to-center lateral spacing shall be maintained between boxes. - E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 4 in [100 mm] square x 2.125 in [55 mm] deep, with device covers for the wall material and thickness involved. - F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1." - G. On all branch circuit junction box covers, identify the circuits with black marker. - - - E N D - - - ## **SECTION 26 08 00** ## COMMISSIONING OF ELECTRICAL SYSTEMS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 26. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. ## 1.3 SUMMARY - A. This Section includes requirements for commissioning the electrical systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance. - C. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. # 1.4 DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. #### 1.5 COMMISSIONED SYSTEMS - A. Commissioning of a system or systems specified in this Division is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent. - B. The following Electrical systems will be commissioned: 1. Lighting Controls (Control system hardware and software, scene settings, zone settings, occupancy sensor interface, and unoccupied cycle control). ## 1.6 SUBMITTALS - A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the Resident Engineer prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. # PART 2 - PRODUCTS (NOT USED) #### PART 3 - EXECUTION #### 3.1 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. #### 3.2 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. #### 3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING: A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. # 3.4 TRAINING OF VA PERSONNEL A. Training of the VA's operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements. ---- END ---- # SECTION 26 09 23 LIGHTING CONTROLS ## PART 1 - GENERAL #### 1.1 DESCRIPTION This section specifies the furnishing, installation and connection of the lighting controls. #### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26. - B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents. - D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems. # 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 SUBMITTALS - A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following: - B. Product Data: For each type of lighting control, submit the following information. - 1. Manufacturer's catalog data. - 2. Wiring schematic and connection diagram. - 3. Installation details. # C. Manuals: - 1. Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts. - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer. ## D. Certifications: - 1. Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer: - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. Green Seal (GS): GC-12.....Occupancy Sensors C. Underwriters Laboratories, Inc. (UL): 20......Standard for
General-Use Snap Switches ## PART 2 - PRODUCTS ## 2.1 INDOOR OCCUPANCY SENSORS - A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed. - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off. - 2. Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit. - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V. - 4. Mounting: - a. Sensor: Suitable for mounting in any position on a standard outlet box. - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door. - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor. - 6. Bypass Switch: Override the on function in case of sensor failure. - 7. Manual/automatic selector switch. - 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc [21.5 to 2152 lx]; keep lighting off when selected lighting level is present. - 9. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES. - B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable. - 1. Sensitivity Adjustment: Separate for each sensing technology. - 2. Detector Sensitivity: Detect occurrences of 6-inch [150mm] minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. [232 sq. cm], and detect a person of average size and weight moving not less than 12 inches [305 mm] in either a horizontal or a vertical manner at an approximate speed of 12 inches/s [305 mm/s]. 3. Detection Coverage: as scheduled on drawings. ## PART 3 - EXECUTION ## 3.1 INSTALLATION: - A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified. - B. Aim outdoor photocell switch according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle photocell turn-on. - C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations. - D. Set occupancy sensor "on" duration to 15 minutes. - E. Locate light level sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the scheduled light level at the typical work plane for that area. - F. Label time switches and contactors with a unique designation. ## 3.2 ACCEPTANCE CHECKS AND TESTS - A. Perform in accordance with the manufacturer's recommendations. - B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section. - C. Test occupancy sensors for proper operation. Observe for light control over entire area being covered. - D. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory-authorized technician who will verify all adjustments and sensor placements. # 3.3 FOLLOW-UP VERIFICATION Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function. - - - E N D - - - # SECTION 26 27 26 WIRING DEVICES ## PART 1 - GENERAL #### 1.1 DESCRIPTION This section specifies the furnishing, installation and connection of wiring devices. #### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26. - B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlets boxes. - C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring. - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents. ## 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. # 1.4 SUBMITTALS - A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following: - B. Shop Drawings: - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications. - 2. Include electrical ratings, dimensions, mounting details, construction materials, grade and termination information. - C. Manuals: Two weeks prior to final inspection, deliver four copies of the following to the Resident Engineer: Technical data sheets and information for ordering replacement units. - D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer: Certification by the Contractor that the devices comply with the drawings and specifications, and have been properly installed, aligned, and tested. ## 1.5 APPLICABLE PUBLICATIONS A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. - B. National Fire Protection Association (NFPA): - 70......National Electrical Code (NEC) - C. National Electrical Manufacturers Association (NEMA): - WD 1......General Color Requirements for Wiring Devices - WD 6Wiring Devices Dimensional Requirements - D. Underwriter's Laboratories, Inc. (UL): - 20.....General-Use Snap Switches - 231.....Power Outlets - 467..... Grounding and Bonding Equipment - 498..... Attachment Plugs and Receptacles - 943..... Ground-Fault Circuit-Interrupters ## PART 2 - PRODUCTS #### 2.1 RECEPTACLES - A. General: All receptacles shall be listed by Underwriters Laboratories, Inc., and conform to NEMA WD 6. - 1. Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal. - Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four min.) and side wiring from four captively held binding screws. - B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, and conform to the NEMA 5-20R configuration in NEMA WD - 6. The duplex type shall have break-off feature for two-circuit operation. The ungrounded pole of each receptacle shall be provided with a separate terminal. - 1. Bodies shall be ivory in color. - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The remaining receptacle shall be unswitched. - 3. Duplex Receptacles on Emergency Circuit: - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type. - 4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box. - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of five milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or -1 milliamp) on the load side of the device. Device shall have a minimum nominal tripping time of 1/30th of a second. ## 2.2 TOGGLE SWITCHES - A. Toggle Switches: Shall be totally enclosed tumbler type with bodies of phenolic compound. Toggle handles shall be ivory in color unless otherwise specified. The rocker type switch is not acceptable and will not be approved. - 1. Switches installed in hazardous areas shall be explosion proof type in accordance with the NEC and as shown on the drawings. - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws. # 3. Ratings: - a. 120 volt circuits: 20 amperes at 120-277 volts AC. - b. 277 volt circuits: 20 amperes at 120-277 volts AC. ## 2.3 WALL PLATES - A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable. - B. Standard NEMA design, so that products of different manufacturers will be interchangeable. Dimensions for openings in wall plates shall be accordance with NEMA WD 6. - C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches. - D. Wall plates for data, telephone or other communication outlets shall be as specified in the associated specification. - E. Duplex Receptacles on Emergency Circuit: - 1. Bodies shall be red in color. Wall plates shall be red with the word "EMERGENCY" engraved in 6 mm, (1/4 inch) white letters. # PART 3 - EXECUTION # 3.1 INSTALLATION - A. Installation shall be in accordance with the NEC and as shown as on the drawings. - B. Ground terminal of each receptacle shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the green equipment grounding conductor. - C. Outlet boxes for light and dimmer switches shall be mounted on the strike side of doors. - D. Provide barriers in multigang outlet boxes to separate systems of different voltages, Normal Power and Emergency Power systems, and in compliance with the NEC. - E. Coordinate with other work, including painting, electrical boxes and wiring installations, as necessary to interface installation of wiring devices with other work. Coordinate the electrical
work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment. - F. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades. In addition, check for exact direction of door swings so that local switches are properly located on the strike side. - G. Install wall switches 48 inches [1200mm] above floor, OFF position down. - H. Install convenience receptacles 18 inches [450mm] above floor, and 6 inches [152mm] above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings. - I. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device. - J. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above. - K. Test GFCI devices for tripping values specified in UL 1436 and UL 943. - - - E N D - - - # SECTION 26 51 00 INTERIOR LIGHTING ## PART 1 - GENERAL #### 1.1 DESCRIPTION: This section specifies the furnishing, installation and connection of the interior lighting systems. #### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26. - B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents. - D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems. ## 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 SUBMITTALS - A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following: - B. Product Data: For each type of lighting fixture (luminaire) designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of fixture designation, submit the following information. - Material and construction details include information on housing, optics system and lens/diffuser. - 2. Physical dimensions and description. - 3. Wiring schematic and connection diagram. - 4. Installation details. - 5. Energy efficiency data. - 6. Photometric data based on laboratory tests complying with IESNA Lighting Measurements, testing and calculation guides. - Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours) and color temperature (degrees Kelvin). - 8. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts and total harmonic distortion (THD). ## C. Manuals: - 1. Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts. - 2. Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the Resident Engineer. #### D. Certifications: - 1. Two weeks prior to final inspection, submit four copies of the following certifications to the Resident Engineer: - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. Institute of Electrical and Electronic Engineers (IEEE): - C62.41-91......Guide on the Surge Environment in Low Voltage (1000V and less) AC Power Circuits - C. National Fire Protection Association (NFPA): - 70......National Electrical Code (NEC) - 101.....Life Safety Code - D. National Electrical Manufacturer's Association (NEMA): - C82.1-97..... Ballasts for Fluorescent Lamps Specifications - C82.2-02..... Method of Measurement of Fluorescent Lamp - Ballasts - C82.4-02.....Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps - C82.11-02......High Frequency Fluorescent Lamp Ballasts - E. Underwriters Laboratories, Inc. (UL): - 496-96.....Edison-Base Lampholders - 542-99.....Lampholders, Starters, and Starter Holders for Fluorescent Lamps - 924-95..... Emergency Lighting and Power Equipment - 935-01.....Fluorescent-Lamp Ballasts - 1598-00.....Luminaires - 8750-08.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products - F. Federal Communications Commission (FCC): Code of Federal Regulations (CFR), Title 47, Part 18 ## PART 2 - PRODUCTS ## 2.1 LIGHTING FIXTURES (LUMINAIRES) A. Shall be in accordance with NFPA 70 and UL 1598, as shown on drawings, and as specified. # B. Sheet Metal: - 1. Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved) and parallel to each other as designed. - 2. Wireways and fittings shall be free of burrs and sharp edges and shall accommodate internal and branch circuit wiring without damage to the wiring. - 3. When installed, any exposed fixture housing surface, trim frame, door frame and lens frame shall be free of light leaks; lens doors shall close in a light tight manner. - 4. Hinged door closure frames shall operate smoothly without binding when the fixture is in the installed position, latches shall function easily by finger action without the use of tools. - C. Ballasts shall be serviceable while the fixture is in its normally installed position, and shall not be mounted to removable reflectors or wireway covers unless so specified. ## D. Lamp Sockets: - 1. Fluorescent: Lampholder contacts shall be the biting edge type or phosphorous-bronze with silver flash contact surface type and shall conform to the applicable requirements of UL 542. Lamp holders for bi-pin lamps shall be of the telescoping compression type, or of the single slot entry type requiring a one-quarter turn of the lamp after insertion. - E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings. - F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, captive hinges or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance. ## G. Metal Finishes: 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner - to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication. - 2. Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing. - 3. Exterior finishes shall be as shown on the drawings. - H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor. - I. Light Transmitting Components for Fluorescent Fixtures: - 1. Shall be 100 percent virgin acrylic. - 2. Flat lens panels shall have not less than 1/8 inch [3.2mm] of average thickness. The average thickness shall be determined by adding the maximum thickness to the minimum unpenetrated thickness and dividing the sum by 2. - 3. Unless otherwise specified, lenses, diffusers and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction of the lens without distortion or cracking. - J. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Group areas as defined in NFPA 70, and shall comply with UL 844. - K. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures (not the lamp). Fixtures shall be designed for lamps as specified. # 2.2 BALLASTS - A. Linear Fluorescent Lamp Ballasts: Multi-voltage (120 277V) electronic type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated; including the following features: - 1. Lamp end-of-life detection and shutdown circuit (T5 lamps only). - 2. Automatic lamp starting after lamp replacement. - 3. Sound Rating: Class A. - 4. Total Harmonic Distortion Rating: 10 percent or less. - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better. - 6. Operating Frequency: 20 kHz or higher. - 7. Lamp Current Crest Factor: 1.7 or less. - 8. Ballast Factor: 0.87 or higher unless otherwise indicated. - 9. Power Factor: 0.98 or higher. - 10. Interference: Comply with 47 CFT 18, Ch.1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment. - 11. To facilitate
multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled. - 12. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp. - B. Low-Frequency Linear T8 Fluorescent Lamp Ballasts (allowed for Surgery Suites, Critical Care Units and Animal Labs): 120V electronic-electromagnetic rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output; including the following features: - 1. Automatic lamp starting after lamp replacement. - 2. Sound Rating: Class A. - 3. Total Harmonic Distortion Rating: 20 percent or less. - 4. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better. - 5. Operating Frequency: 60 Hz. - 6. Lamp Current Crest Factor: 1.7 or less. - 7. Ballast Factor: 0.85 or higher unless otherwise indicated. - 8. Power Factor: 0.90 or higher. - 9. Interference: Comply with 47 CFT 18, Ch.1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment. - 10. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each - switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled. - 11. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp. - C. Compact Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bilevel control is indicated; including the following features: - 1. Lamp end-of-life detection and shutdown circuit. - 2. Automatic lamp starting after lamp replacement. - 3. Sound Rating: Class A. - 4. Total Harmonic Distortion Rating: 10 percent or less. - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better. - 6. Operating Frequency: 20 kHz or higher. - 7. Lamp Current Crest Factor: 1.7 or less. - 8. Ballast Factor: 0.95 or higher unless otherwise indicated. - 9. Power Factor: 0.98 or higher. - 10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment. # 2.3 LAMPS - A. Linear and U-shaped T5 and T8 Fluorescent Lamps: - 1. Rapid start fluorescent lamps shall comply with ANSI C78.1; and instant-start lamps shall comply with ANSI C78.3. - 2. Chromacity of fluorescent lamps shall comply with ANSI C78.376. - 3. Except as indicated below, lamps shall be low-mercury energy saving type, have a color temperature between 3500° and 4100°K, a Color Rendering Index (CRI) of greater than 70, average rated life of 20,000 hours, and be suitable for use with dimming ballasts, unless otherwise indicated. Low mercury lamps shall have passed the EPA Toxicity Characteristic Leachate Procedure (TCLP) for mercury by using the lamp sample preparation procedure described in NEMA LL 1. - a. Over the beds in Intensive Care, Coronary Care, Recovery, Life Support, and Observation and Treatment areas; Electromyographic, Autopsy (Necropsy), Surgery, and certain dental rooms (Examination, Oral Hygiene, Oral Surgery, Recovery, Labs, Treatment, and X-Ray) use color corrected lamps having a CRI of 85 or above and a correlated color temperature between 5000 and 6000°K. - b. Other areas as indicated on the drawings. - B. Compact Fluorescent Lamps: - 1. T4, CRI 80 (minimum), color temperature 3500 K, and suitable for use with dimming ballasts, unless otherwise indicated. ## 2.4 RADIO-INTERFERENCE-FREE FLUORESCENT FIXTURES - A. Shall be specially designed for suppressing radio-frequency energy produced within the fixtures. The Rules and Regulations of FCC (CFR 47, Part 18) shall apply. - B. Lenses shall have a light-transparent layer of metal permanently bonded to them, and in positive contact with the steel housing or equal to prevent the radio-frequency interferences from passing through the lenses. The effective light transmittance of the lenses shall be not less than 75 percent. - C. Install line filters within the body of the fixtures and wired in series with the supply circuit conductors to eliminate the transmission of radio frequency energy into the supply circuit. - D. Ballasts shall be as specified herein. # 2.5 X-RAY FILM ILLUMINATORS - A. Shall be the high-intensity type, flush-mounted in the walls. Multiples of the basic unit may be combined in a common housing. - B. Shall have the following features: - 1. Fluorescent lighting, designed to provide uniform diffusion of the light. - 2. Box dimensions approximately 21 inches [525mm] high, 14 inches [350mm] wide and 4 inches [100mm] deep. - 3. Frame shall be satin chrome-plated brass or stainless steel and shall extend approximately 1-1/2 inches [40mm] from the edges of the box. - 4. Viewing glass shall be the heat resistant, borosilicate type or 100 percent virgin acrylic plastic and not less than 1/8 inch [3mm] thick. - 5. Viewing glass shall have adequate dimensions so the films will not overlap the frame and will be positioned with respect to the light source for even illumination without shadows. - 6. An ON-OFF double-pole, double-throw switch. #### 2.6 EXIT LIGHT FIXTURES - A. Exit light fixtures shall meet applicable requirements of NFPA 101 and UL 924. - B. Housing and Canopy: - 1. Shall be made of die-cast aluminum. - 2. Optional steel housing shall be a minimum 20 gauge thick or equivalent strength aluminum. - 3. Steel housing shall have baked enamel over corrosion resistant, matte black or ivory white primer. - C. Door frame shall be cast or extruded aluminum, and hinged with latch. - D. Finish shall be satin or fine-grain brushed aluminum. - E. There shall be no radioactive material used in the fixtures. - F. Fixtures: - 1. Maximum fixture wattage shall be 1 watt or less. - 2. Inscription panels shall be cast or stamped aluminum a minimum of 0.090 inch [2.25mm] thick, stenciled with 6 inch [150mm] high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass. The LED shall be rated minimum 25 years life. - 3. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings. - 4. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101. - G. Voltages: Refer to Lighting Fixture Schedule. ## PART 3 - EXECUTION # 3.1 INSTALLATION - A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified. - B. Align, mount and level the lighting fixtures uniformly. - C. Lighting Fixture Supports: - 1. Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural - slab or to structural members within a partition, or above a suspended ceiling. - 2. Shall maintain the fixture positions after cleaning and relamping. - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect. - 4. Hardware for recessed fluorescent fixtures: - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system. - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points. - 5. Hardware for surface mounting fluorescent fixtures to suspended ceilings: - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 1/4 inch [6mm] secured to channel members attached to and spanning the tops of the ceiling structural grid members. Non-turning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal. - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each
fixture. Pre-positioned 1/4 inch [6mm] studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 1/4 inch [6mm] toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking. - D. Furnish and install the specified lamps for all lighting fixtures installed and all existing lighting fixtures reinstalled under this project. - E. Coordinate between the electrical and ceiling trades to ascertain that approved lighting fixtures are furnished in the proper sizes and - installed with the proper devices (hangers, clips, trim frames, flanges), to match the ceiling system being installed. - F. Bond lighting fixtures and metal accessories to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. - G. Exercise electronic dimming ballasts over full range of dimming capability by operating the control devices(s) in the presence of the Resident Engineer. Observe for visually detectable flicker over full dimming range. - H. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless a lesser period is specifically recommended by lamp manufacturer. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed, for at least 100 hours at full voltage. Replace any lamps and ballasts which fail during burn-in. - I. At completion of project, relamp/reballast fixtures which have failed lamps/ballasts. Clean fixtures, lenses, diffusers and louvers that have accumulated dust/dirt/fingerprints during construction. Replace damaged lenses, diffusers and louvers with new. - J. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. - - - E N D - - - # SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS # PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This Section, Requirements for Communications Installations, applies to all sections of Division 27. - B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings. ## 1.2 MINIMUM REQUIREMENTS - A. References to industry and trade association standards and codes are minimum installation requirement standards. - B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards. ## 1.3 QUALIFICATIONS (PRODUCTS AND SERVICES) - A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years. - B. Product Qualification: - 1. Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years. - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval. - C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations. ## 1.4 MANUFACTURED PRODUCTS - A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available. - B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer. - C. Equipment Assemblies and Components: - 1. Components of an assembled unit need not be products of the same manufacturer. - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit. - 3. Components shall be compatible with each other and with the total assembly for the intended service. - 4. Constituent parts which are similar shall be the product of a single manufacturer. - D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams. - E. When Factory Testing Is Specified: - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests. - 2. Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests. - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government. #### 1.5 EQUIPMENT REQUIREMENTS Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods. ## 1.6 EQUIPMENT PROTECTION - A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain: - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required. - Damaged equipment shall be, as determined by the Resident Engineer, placed in first class operating condition or be returned to the source of supply for repair or replacement. - 3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal. - 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious. #### 1.7 WORK PERFORMANCE - A. Job site safety and worker safety is the responsibility of the contractor. - B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS. - C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS. - D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS. ## 1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS - A. Equipment location shall be as close as practical to locations shown on the drawings. - B. Inaccessible Equipment: - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government. - 2. "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways. ## 1.9 EQUIPMENT IDENTIFICATION - A. Install an identification sign which clearly indicates information required for use and maintenance of equipment. - B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as a standard catalog item, or where other method of identification is herein specified, are exceptions. ## 1.10 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site. - C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. - D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval. - 1. Mark the submittals, "SUBMITTED UNDER SECTION". - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers. - 3. Submit each section separately. - E. The submittals shall include the following: - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required. - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams. - 3. Parts list which shall include those replacement parts recommended by the
equipment manufacturer, quantity of parts, current price and availability of each part. - F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS. - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion. - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment. - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in. - 4. The manuals shall include: - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment. - b. A control sequence describing start-up, operation, and shutdown. - c. Description of the function of each principal item of equipment. - d. Installation and maintenance instructions. - e. Safety precautions. - f. Diagrams and illustrations. - q. Testing methods. - h. Performance data. - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization. - j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications. - G. Approvals will be based on complete submission of manuals together with shop drawings. - H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following: - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken. - 2. Each type of conduit and pathway coupling, bushing and termination fitting. - 3. Raceway and pathway hangers, clamps and supports. - 4. Duct sealing compound. # 1.11 SINGULAR NUMBER Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings. ## 1.12 TRAINING - A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS. - B. Training shall be provided for the particular equipment or system as required in each associated specification. - C. A training schedule shall be developed and submitted by the contractor and approved by the Resident Engineer at least 30 days prior to the planned training. - - - E N D - - - # SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies general grounding and bonding requirements of telecommunication installations for equipment operations. - B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes. - C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning. ## 1.2 RELATED WORK - A. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 27. - B. Section 27 10 00, STRUCTURED CABLING: Low Voltage power and lighting wiring. ## 1.3 SUBMITTALS - A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS. - B. Shop Drawings: - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications. - 2. Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors. - C. Test Reports: Provide certified test reports of ground resistance. - D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the Resident Engineer: - 1. Certification that the materials and installation is in accordance with the drawings and specifications. - 2. Certification, by the Contractor, that the complete installation has been properly installed and tested. ## 1.4 APPLICABLE PUBLICATIONS Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. A. American Society for Testing and Materials (ASTM): B1-2001......Standard Specification for Hard-Drawn Copper Wire B8-2004......Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983..... EEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C. National Fire Protection Association (NFPA): 70-2005......National Electrical Code (NEC) D. Telecommunications Industry Association, (TIA) J-STO-607-A-2002......Commercial Building Grounding (Earthing) and Bonding Requirements for Telecommunications E. Underwriters Laboratories, Inc. (UL): 467-2004Grounding and Bonding Equipment 486A-486B-2003Wire Connectors # PART 2 - PRODUCTS ## 2.1 GROUNDING AND BONDING CONDUCTORS - A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC. - B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire. - C. Isolated Power System: Type XHHW-2 insulation with a dielectric constant of 3.5 or less. - D. Telecom System Grounding Riser Conductor: Telecommunications Grounding Riser shall be in accordance with J STO-607A. Use a minimum 50mm² (1/0 AWG) insulated stranded copper grounding conductor unless indicated otherwise. ## 2.2 SPLICES AND TERMINATION COMPONENTS Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s). #### PART 3 - EXECUTION #### 3.1 GENERAL A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified. # 3.2 TELECOMMUNICATIONS SYSTEM - A. Bond telecommunications system grounding equipment to the electrical grounding electrode system. - B. Furnish and install all wire and hardware required to properly ground, bond and connect communications raceway, cable tray, metallic cable shields, and equipment to a ground source. - C. Ground bonding jumpers shall be continuous with no splices. Use the shortest length of bonding jumper possible. - D. Provide ground paths that are permanent and continuous with a resistance of 1 ohm or less from raceway, cable tray, and equipment connections to the building grounding electrode. The resistance across individual bonding connections shall be 10 milli ohms or less. - E. Below-Grade Grounding Connections: When making exothermic welds, wire brush or file the point of contact to a bare metal surface. Use exothermic welding cartridges and molds in accordance with the manufacturer's recommendations. After welds have been made and cooled, brush slag from the weld area and thoroughly cleaned the joint area. Notify the Resident Engineer prior to backfilling any ground connections. - F. Above-Grade Grounding Connections: When making bolted or screwed connections to attach bonding jumpers, remove paint to expose the entire contact surface by grinding where necessary; thoroughly clean all connector, plate and other contact surfaces; and apply an appropriate corrosion inhibitor to all surfaces before joining. ## G. Bonding Jumpers: - Use insulated ground wire of the size and type shown on the Drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire. - 2. Assemble bonding jumpers using insulated ground wire terminated with compression connectors. 3. Use compression connectors of proper size for conductors specified. Use connector manufacturer's compression tool. ## H. Bonding Jumper Fasteners: - 1. Conduit: Fasten bonding jumpers using screw lugs on grounding bushings or conduit strut clamps, or the clamp pads on push-type conduit fasteners. When screw lug connection to a conduit strut clamp is not possible, fasten the plain end of a bonding jumper wire by slipping the plain end under the conduit strut clamp pad; tighten the clamp screw firmly. Where appropriate, use zinc-plated external tooth lockwashers. - 2. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers, and nuts. Install protective cover, e.g., zinc-plated acorn nuts on any bolts extending into wireway or cable tray to prevent cable damage. - 3. Ground Plates and Busbars: Fasten bonding jumpers using two-hole compression lugs. Use tin-plated copper or copper alloy bolts, external tooth lockwashers, and nuts. - 4. Unistrut and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and external tooth lockwashers. #### 3.3 COMMUNICATIONS CABLE GROUNDING - A. Bond
all metallic cable sheaths in multipair communications cables together at each splicing and/or terminating location to provide 100 percent metallic sheath continuity throughout the communications distribution system. - 1. At terminal points, install a cable shield bonding connector provide a screw stud connection for ground wire. Use a bonding jumper to connect the cable shield connector to an appropriate ground source like the rack or cabinet ground bar. - 2. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or the splice case grounding and bonding accessories provided by the splice case manufacturer. When an external ground connection is provided as part of splice closure, connect to an approved ground source and all other metallic components and equipment at that location. # 3.4 COMMUNCIATIONS RACEWAY GROUNDING A. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to ground metallic conduit at each end and to bond at all intermediate metallic enclosures. - B. Wireway: use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and across all section junctions. - C. Cable Tray Systems: Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 16 meters (50 feet). #### 3.5 GROUND RESISTANCE - A. Grounding system resistance to ground shall not exceed 5 ohms. Make necessary modifications or additions to the grounding electrode system for compliance without additional cost to the Government. Final tests shall assure that this requirement is met. - B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided. - C. Services at power company interface points shall comply with the power company ground resistance requirements. - D. Below-grade connections shall be visually inspected by the Resident Engineer prior to backfilling. The Contractor shall notify the Resident Engineer 24 hours before the connections are ready for inspection. - - - E N D - - - # SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise. - B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified. ## 1.2 RELATED WORK - A. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING. - B. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING. - C. General electrical requirements and items that is common to more than one section of Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS. - D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS. ## 1.3 SUBMITTALS In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following: # A. Shop Drawings: - 1. Size and location of panels and pull boxes - 2. Layout of required conduit penetrations through structural elements. - 3. The specific item proposed and its area of application shall be identified on the catalog cuts. - B. Certification: Prior to final inspection, deliver to the COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed. ## 1.4 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. - B. National Fire Protection Association (NFPA): 70-05......National Electrical Code (NEC) | C. | Underwriters Laboratories | , Inc. (UL): | |----|--|---| | | 1-03F | lexible Metal Conduit | | | 5-01sı | urface Metal Raceway and Fittings | | | 6-03R: | igid Metal Conduit | | | 50-03En | nclosures for Electrical Equipment | | | 360-03L | iquid-Tight Flexible Steel Conduit | | | 467-01 | rounding and Bonding Equipment | | | 514A-01Me | etallic Outlet Boxes | | | 514B-02F | ittings for Cable and Conduit | | | 514C-05 | onmetallic Outlet Boxes, Flush-Device Boxes and | | | Co | overs | | | 651-02Sc | chedule 40 and 80 Rigid PVC Conduit | | | 651A-03T ₃ | ype EB and A Rigid PVC Conduit and HDPE Conduit | | | 797-03E | lectrical Metallic Tubing | | | 1242-00Ir | ntermediate Metal Conduit | | D. | O. National Electrical Manufacturers Association (NEMA): | | | | TC-3-04 | VC Fittings for Use with Rigid PVC Conduit and | | | Tt | ubing | | | FB1-03F | ittings, Cast Metal Boxes and Conduit Bodies | | | fo | or Conduit, Electrical Metallic Tubing and | | | Ca | able | # PART 2 - PRODUCTS ## 2.1 MATERIAL A. Conduit Size: In accordance with the NEC, but not less than 13 mm (3/4 inch) unless otherwise shown. Where permitted by the NEC, 13 mm (1/2 inch) flexible conduit may be used for tap connections to recessed lighting fixtures. ## B. Conduit: - 1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1. - 2. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5. - 3. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6. - 4. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less. - 5. Flexible galvanized steel conduit: Shall Conform to UL 1. - 6. Liquid-tight flexible metal conduit: Shall Conform to UL 360. # C. Conduit Fittings: 1. Rigid steel and IMC conduit fittings: - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA $\,$ FB1. - a. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable. - b. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure. - c. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted. - d. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited. - e. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room. - 2. Electrical metallic tubing fittings: - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FR1. - b. Only steel or malleable iron materials are acceptable. - c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding. - d. Indent type connectors or couplings are prohibited. - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited. - 3. Flexible steel conduit fittings: - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable. - b. Clamp type, with insulated throat. - 4. Liquid-tight flexible metal conduit fittings: - a. Fittings shall meet the requirements of UL 514B and ANSI/ $\ensuremath{\mathsf{NEMA}}$ FB1. - b. Only steel or malleable iron materials are acceptable. - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats. - 5. Expansion and deflection couplings: - a. Conform to UL 467 and UL 514B. - b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections. - c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors. - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps. ## D. Conduit Supports: - 1. Parts and hardware: Zinc-coat or provide equivalent corrosion protection. - 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod. - 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch)
diameter steel hanger rods. - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion. - E. Outlet, Junction, and Pull Boxes: - 1. UL-50 and UL-514A. - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes. - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown. - 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers. ## PART 3 - EXECUTION #### 3.1 PENETRATIONS - A. Cutting or Holes: - 1. Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural sections. - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer as required by limited working space. - B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material. - C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS. ## 3.2 INSTALLATION, GENERAL - A. Install conduit as follows: - 1. In complete runs before pulling in cables or wires. - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material. - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways. - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight. - 5. Mechanically continuous. - 6. Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts). - 7. Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected. - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in. - 9. Conduit installations under fume and vent hoods are prohibited. - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers. - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL. - 12. Do not use aluminum conduits in wet locations. - 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings. # B. Conduit Bends: - 1. Make bends with standard conduit bending machines. - 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits. - 3. Bending of conduits with a pipe tee or vise is prohibited. - C. Layout and Homeruns: - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the // Resident Engineer // COTR //. ## 3.3 CONCEALED WORK INSTALLATION - A. Furred or Suspended Ceilings and in Walls: - 1. Conduit for conductors above 600 volts: - a. Rigid steel or rigid aluminum. - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited. - 2. Conduit for conductors 600 volts and below: - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited. - Align and run conduit parallel or perpendicular to the building lines. - 4. Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (six feet) of flexible metal conduit extending from a junction box to the fixture. - 5. Tightening set screws with pliers is prohibited. ## 3.4 EXPANSION JOINTS A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations. - B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable. - C. Install expansion and deflection couplings where shown. ## 3.5 CONDUIT SUPPORTS, INSTALLATION - A. Safe working load shall not exceed 1/4 of proof test load of fastening devices. - B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center. - C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners. - D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items. - E. Fasteners and Supports in Solid Masonry and Concrete: - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete. - 2. Existing Construction: - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment. - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches). - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings. - F. Hollow Masonry: Toggle bolts are permitted. - G. Bolts supported only by plaster or gypsum wallboard are not acceptable. - H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application. - I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited. - J. Chain, wire, or perforated strap shall not be used to support or fasten conduit. - K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls. L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars. ## 3.6 BOX INSTALLATION - A. Boxes for Concealed Conduits: - 1. Flush mounted. - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish. - B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations. - C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes. - D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1". ## 3.7 COMMUNICATION SYSTEM CONDUIT - A. Install the communication raceway system as shown on drawings. - B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings. - C. All conduit ends shall be equipped with insulated bushings. - D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC. - E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below. - F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard. - G. Were drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams. - H. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements. - I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius): | Sizes of Conduit | Radius of Conduit Bends | |------------------|-------------------------| | Trade Size | mm, Inches | | 3/4 | 150 (6) | | 1 | 230 (9) | | 1-1/4 | 350 (14) | | 1-1/2 | 430 (17) | | 2 | 525 (21) | | 2-1/2 | 635 (25) | | 3 | 775 (31) | | 3-1/2 | 900 (36) | | 4 | 1125 (45) | - J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor. - K. Furnish and pull wire in all empty conduits.
(Sleeves through floor are exceptions). - - - E N D - - - ## **SECTION 27 08 00** ## COMMISSIONING OF COMMUNICATIONS SYSTEMS #### PAET 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 27. - B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process. #### 1.2 RELATED WORK - A. Section 01 00 00 GENERAL REQUIREMENTS. - B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. ## 1.3 SUMMARY - A. This Section includes requirements for commissioning the communications systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. - B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance. - C. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members. # 1.4 DEFINITIONS A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions. #### 1.5 COMMISSIONED SYSTEMS - A. Commissioning of a system or systems specified in this Division is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent. - B. The following Communications systems will be commissioned: 1. Morgue Telecommunications and Data Distribution Systems. ## 1.6 SUBMITTALS - A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the Resident Engineer prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details. - B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. ## PART 2 - PRODUCTS (NOT USED) ## PART 3 - EXECUTION ## 3.1 PRE-FUNCTIONAL CHECKLISTS A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents. # 3.2 CONTRACTORS TESTS A. Contractor tests as required by other sections of Division 27 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. The Commissioning Agent will witness selected Contractor tests. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing. ## 3.3 SYSTEMS FUNCTIONAL PERFORMANCE TESTING: A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details. #### 3.4 TRAINING OF VA PERSONNEL A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 27 Sections for additional Contractor training requirements. ---- END ---- # SECTION 27 10 00 STRUCTURED CABLING ## PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, and connection of the structured cabling system to provide a comprehensive telecommunications infrastructure. #### 1.2 RELATED WORK - A. Sealing around penetrations to maintain the integrity of time rated construction: Section 07 84 00, FIRESTOPPING. - B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS. - C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS. - D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS. ## 1.3 SUBMITTALS - A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following: - 1. Manufacturer's Literature and Data: Showing each cable type and rating. - 2. Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed. #### 1.4 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only. - B. American Society of Testing Material (ASTM): D2301-04......Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape | D. | National Fire Protection Association (NFPA): | | | |----|--|--|--| | | 70-05 | Mational Electrical Code (NEC) | | | Ε. | . Underwriters Laboratories, Inc. (UL): | | | | | 44-02 | Chermoset-Insulated Wires and Cables | | | | 83-03 | Chermoplastic-Insulated Wires and Cables | | | | 467-01E | Electrical Grounding and Bonding Equipment | | | | 486A-01w | Tire Connectors and Soldering Lugs for Use with | | | | C | Copper Conductors | | | | 486C-02S | Splicing Wire Connectors | | | | 486D-02I | insulated Wire Connector Systems for Underground | | | | υ | Sse or in Damp or Wet Locations | | | | 486E-00 | Equipment Wiring Terminals for Use with Aluminum | | | | а | and/or Copper Conductors | | | | 493-01 | Thermoplastic-Insulated Underground Feeder and | | | | E | Branch Circuit Cable | | | | 514B-02F | ittings for Cable and Conduit | | | | 1479-03 F | lire Tests of Through-Penetration Fire Stops | | ## PART 2 - PRODUCTS ## 2.1 CONTROL WIRING - A. Unless otherwise specified in other sections of these specifications, control wiring shall be as specified for power and lighting wiring, except the minimum size shall be not less than No. 14 AWG. - B. Control wiring shall be large enough so that the voltage drop under inrush conditions does not adversely affect operation of the controls. ## 2.2 COMMUNICATION AND SIGNAL WIRING - A. Shall conform to the recommendations of the manufacturers of the communication and signal systems; however, not less than what is shown. - B. Wiring shown is for typical systems. Provide wiring as required for the systems being furnished. - C. Multi-conductor cables shall have the conductors color coded. ## 2.3 WIRE LUBRICATING COMPOUND - A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive. - B. Shall not be used on wire for isolated type electrical power systems. ## 2.4 FIREPROOFING TAPE - A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer. - B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof. - C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be
resistant to sunlight and ultraviolet light. - D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds. - E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide. #### PART 3 - EXECUTION ## 3.1 INSTALLATION, GENERAL - A. Install all wiring in raceway systems. - B. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound. - C. Wire Pulling: - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables. - 2. Use ropes made of nonmetallic material for pulling feeders. - 3. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer. - 4. Pull in multiple cables together in a single conduit. ## 3.2 CONTROL, COMMUNICATION AND SIGNAL WIRING INSTALLATION - A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified. - B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems. - C. Where separate power supply circuits are not shown, connect the systems to the nearest panelboards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation. - D. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems. - E. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC. ## 3.3 CONTROL, COMMUNICATION AND SIGNAL SYSTEM IDENTIFICATION A. Install a permanent wire marker on each wire at each termination. - B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems. - C. Wire markers shall retain their markings after cleaning. - D. In each manhole and handhole, install embossed brass tags to identify the system served and function. ## 3.4 EXISITNG WIRING Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed. - - - E N D - - -